Algorithmic complexity of quantum capacity

被引:3
作者
Oskouei, Samad Khabbazi [1 ]
Mancini, Stefano [2 ,3 ]
机构
[1] Islamic Azad Univ, Dept Math, Varamin Pishva Branch, Pishva 338177489, Iran
[2] Univ Camerino, Sch Sci & Technol, Via M delle Carceri 9, I-62032 Camerino, Italy
[3] INFN, Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy
关键词
Algorithmic complexity; Quantum entropies; Quantum channels; Quantum capacity; MAPS;
D O I
10.1007/s11128-018-1859-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.
引用
收藏
页数:13
相关论文
共 19 条
[1]  
[Anonymous], 1994, Computability, complexity, and languages: fundamentals of theoretical computer science
[2]   Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces [J].
Benatti, Fabio ;
Oskouei, Samad Khabbazi ;
Abad, Ahmad Shafiei Deh .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
[3]   Quantum Kolmogorov complexity [J].
Berthiaume, A ;
van Dam, W ;
Laplante, S .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 63 (02) :201-221
[4]   ON LENGTH OF PROGRAMS FOR COMPUTING FINITE BINARY SEQUENCES [J].
CHAITIN, GJ .
JOURNAL OF THE ACM, 1966, 13 (04) :547-+
[5]   COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES [J].
CHOI, MD .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) :285-290
[6]   Unbounded number of channel uses may be required to detect quantum capacity [J].
Cubitt, Toby ;
Elkouss, David ;
Matthews, William ;
Ozols, Maris ;
Perez-Garcia, David ;
Strelchuk, Sergii .
NATURE COMMUNICATIONS, 2015, 6
[7]   The private classical capacity and quantum capacity of a quantum channel [J].
Devetak, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :44-55
[8]   Quantum algorithmic entropy [J].
Gács, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (35) :6859-6880
[9]   A Decoupling Approach to the Quantum Capacity [J].
Hayden, Patrick ;
Horodecki, Michal ;
Winter, Andreas ;
Yard, Jon .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2008, 15 (01) :7-19
[10]   3 APPROACHES TO QUANTITATIVE DEFINITION OF INFORMATION [J].
KOLMOGOROV, AN .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1968, 2 (02) :157-+