From the Klein-Gordon-Zakharov system to the nonlinear Schrodinger equation

被引:68
作者
Masmoudi, N [1 ]
Nakanishi, K
机构
[1] NYU, Courant Inst, New York, NY 10012 USA
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0219891605000683
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the convergence of solutions in the limit from the Klein-Gordon-Zakharov system to the nonlinear Schrodinger equation. The major difficulties are resonant bilinear interactions whose frequency are going to infinity, and the diverging total energy. We overcome them by combining bilinear estimates for non-resonant interactions and a modified nonlinear energy at the resonant frequency.
引用
收藏
页码:975 / 1008
页数:34
相关论文
共 19 条
[11]  
Masmoudi N, 2003, INT MATH RES NOTICES, V2003, P697
[12]   From nonlinear Klein-Gordon equation to a system of coupled nonlinear Schrodinger equations [J].
Masmoudi, N ;
Nakanishi, K .
MATHEMATISCHE ANNALEN, 2002, 324 (02) :359-389
[13]  
MASMOUDI N, UNPUB
[14]   Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions [J].
Ozawa, T ;
Tsutaya, K ;
Tsutsumi, Y .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :127-140
[15]  
Ozawa T., 1992, DIFFERENTIAL INTEGRA, V5, P721
[16]   THE NONLINEAR SCHRODINGER LIMIT OF THE ZAKHAROV EQUATIONS GOVERNING LANGMUIR TURBULENCE [J].
SCHOCHET, SH ;
WEINSTEIN, MI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 106 (04) :569-580
[17]  
Sulem C., 1999, The nonlinear Schrodinger equation. Self-focusing and wave collapse
[18]  
Texier B, 2005, ASYMPTOTIC ANAL, V42, P211
[19]  
Zakharov V. E., 1972, Soviet Physics - JETP, V35, P908