Persistence length convergence and universality for the self-avoiding random walk

被引:4
作者
Granzotti, C. R. F. [1 ]
Ribeiro, F. L. [3 ,4 ]
Martinez, A. S. [1 ,5 ]
da Silva, M. A. A. [2 ]
机构
[1] Univ Sao Paulo, FFCLRP, Ave Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Univ Sao Paulo, FCFRP, Ave Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
[3] Univ Fed Lavras UFLA, Dept Fis DFI, Lavras, MG, Brazil
[4] Univ London, London, England
[5] Natl Inst Sci & Technol Complex Syst INCT SC, Brahmapur, India
基金
巴西圣保罗研究基金会;
关键词
self-avoiding walk; persistence length; pivot algorithm; CLASSICAL SPIN SYSTEMS; CRITICAL EXPONENTS; SCALING EXPONENTS; PIVOT ALGORITHM; DIMENSIONS; POLYMERS; REPRESENTATION;
D O I
10.1088/1751-8121/aaeeb0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, we show the convergence and new properties of persistence length, lambda(N), for the self-avoiding random walk model (SAW) using Monte Carlo data. We generate high precision estimates of several conformational quantities with a pivot algorithm for the square, hexagonal, triangular, cubic and diamond lattices with path lengths of 10(3) steps. For each lattice, we accurately estimate the asymptotic limit lambda(infinity), which corroborates the convergence of lambda(N) to a constant value, and allows us to check the universality on the lambda(N )/ lambda(infinity) curves. Based on the lambda(infinity) estimates we make an ansatz for lambda(infinity) dependency with lattice cell and spatial dimension, we also find a new geometric interpretation for the persistence length.
引用
收藏
页数:16
相关论文
共 47 条
[1]  
[Anonymous], 1988, NUMERICAL RECIPES
[2]   Texture analysis and classification using deterministic tourist walk [J].
Backes, Andre Ricardo ;
Goncalves, Wesley Nunes ;
Martinez, Alexandre Souto ;
Bruno, Odemir Martinez .
PATTERN RECOGNITION, 2010, 43 (03) :685-694
[3]  
Belohorec P, 1997, THESIS
[4]   How the interplay between individual spatial memory and landscape persistence can generate population distribution patterns [J].
Berbert, Juliana M. ;
Fagan, William F. .
ECOLOGICAL COMPLEXITY, 2012, 12 :1-12
[5]   THE RANDOM-WALK REPRESENTATION OF CLASSICAL SPIN SYSTEMS AND CORRELATION INEQUALITIES [J].
BRYDGES, D ;
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (01) :123-150
[6]   THE RANDOM-WALK REPRESENTATION OF CLASSICAL SPIN SYSTEMS AND CORRELATION INEQUALITIES .2. THE SKELETON INEQUALITIES [J].
BRYDGES, DC ;
FROHLICH, J ;
SOKAL, AD .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 91 (01) :117-139
[7]   Geometrical effects on folding of macromolecules [J].
Caliri, A ;
daSilva, MAA .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (18) :7856-7861
[8]  
Cantor C., 1980, BIOPHYS CHEM
[9]   Correction-to-scaling exponents for two-dimensional self-avoiding walks [J].
Caracciolo, S ;
Guttmann, AJ ;
Jensen, I ;
Pelissetto, A ;
Rogers, AN ;
Sokal, AD .
JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (5-6) :1037-1100
[10]   CRITICALITY OF SELF-AVOIDING WALKS WITH AN EXCLUDED INFINITE NEEDLE [J].
CARACCIOLO, S ;
FERRARO, G ;
PELISSETTO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (15) :3625-3639