Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM

被引:19
作者
Arani, A. G. [1 ,2 ]
Jafari, G. S. [1 ]
机构
[1] Univ Kashan, Fac Mech Engn, Kashan 8731751167, Iran
[2] Univ Kashan, Inst Nanosci & Nanotechnol, Kashan 8731751167, Iran
关键词
nonlinear vibration; laminated micro-plate; orthotropic Pasternak medium; differential quadrature method; FINITE-ELEMENT-METHOD; SHEAR DEFORMATION-THEORY; BUCKLING ANALYSIS; ELASTIC-FOUNDATION; BENDING ANALYSIS; STABILITY;
D O I
10.1007/s10483-015-1969-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlocal nonlinear vibration analysis of embedded laminated microplates resting on an elastic matrix as an orthotropic Pasternak medium is investigated. The small size effects of micro/nano-plate are considered based on the Eringen nonlocal theory. Based on the orthotropic Mindlin plate theory along with the von Karman geometric nonlinearity and Hamilton's principle, the governing equations are derived. The differential quadrature method (DQM) is applied for obtaining the nonlinear frequency of system. The effects of different parameters such as nonlocal parameters, elastic media, aspect ratios, and boundary conditions are considered on the nonlinear vibration of the micro-plate. Results show that considering elastic medium increases the nonlinear frequency of system. Furthermore, the effect of boundary conditions becomes lower at higher nonlocal parameters.
引用
收藏
页码:1033 / 1044
页数:12
相关论文
共 20 条
[1]   BUCKLING ANALYSIS OF RECTANGULAR FLEXURAL MICROPLATES USING HIGHER CONTINUITY P-VERSION FINITE-ELEMENT METHOD [J].
Ahmadi, A. R. ;
Farahmand, H. ;
Arabnejad, S. .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2012, 10 (03) :249-259
[2]   Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis [J].
Akhavan, H. ;
Hashemi, Sh. Hosseini ;
Taher, H. Rokni Damavandi ;
Alibeigloo, A. ;
Vahabi, Sh. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 44 (03) :968-978
[3]   Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis [J].
Akhavan, H. ;
Hashemi, Sh. Hosseini ;
Taher, H. Rokni Damavandi ;
Alibeigloo, A. ;
Vahabi, Sh. .
COMPUTATIONAL MATERIALS SCIENCE, 2009, 44 (03) :951-961
[4]  
[Anonymous], J MECH SCI TECHNOLOG
[5]   NONLINEAR STRAIN GRADIENT THEORY BASED VIBRATION AND INSTABILITY OF BORON NITRIDE MICRO-TUBES CONVEYING FERROFLUID [J].
Arani, Ali Ghorbanpour ;
Jalilvand, Abdolreza ;
Kolahchi, Reza .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2014, 6 (05)
[6]   FREE VIBRATION OF FUNCTIONALLY GRADED THIN RECTANGULAR PLATES RESTING ON WINKLER ELASTIC FOUNDATION WITH GENERAL BOUNDARY CONDITIONS USING RAYLEIGH-RITZ METHOD [J].
Chakraverty, S. ;
Pradhan, K. K. .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2014, 6 (04)
[7]   On the bending, vibration and stability of laminated rectangular plates with transversely isotropic layers [J].
Ding, HJ ;
Chen, WQ ;
Xu, RQ .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (01) :17-24
[8]   NONLOCAL POLAR ELASTIC CONTINUA [J].
ERINGEN, AC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1972, 10 (01) :1-&
[9]   Thermal buckling analysis of rectangular microplates using higher continuity p-version finite element method [J].
Farahmand, H. ;
Ahmadi, A. R. ;
Arabnejad, S. .
THIN-WALLED STRUCTURES, 2011, 49 (12) :1584-1591
[10]   Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multiquadric radial basis function method [J].
Ferreira, AJM ;
Roque, CMC ;
Martins, PALS .
COMPOSITES PART B-ENGINEERING, 2003, 34 (07) :627-636