ON θ-CENTRALIZERS OF SEMIPRIME RINGS (II)

被引:0
作者
Daif, M. N. [1 ]
El-Sayiad, M. S. Tammam [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[2] Beni Suef Univ, Fac Sci, Dept Math, Bani Suwayf, Egypt
关键词
Prime ring; semiprime ring; left(right) centralizer; left(right) theta-centralizer; left(right) Jordan theta-centralizer; derivation; Jordan derivation; JORDAN DERIVATIONS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following result is proved: Let R be a 2-torsion free semiprime ring, and let T : R -> R be an additive mapping, related to a surjective homornorphism theta : R -> R, such that 2T(x(2)) = T(x)theta(x) + theta(x)T(x) for all x is an element of R. Then T is both a left and a right theta-centralizer.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 11 条
[1]   On τ-centralizers of semiprime rings [J].
Albas, E. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (02) :191-196
[2]  
[Anonymous], P AM MATH SOC
[3]   JORDAN MAPPINGS OF SEMIPRIME RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1989, 127 (01) :218-228
[4]   JORDAN DERIVATIONS ON PRIME-RINGS [J].
BRESAR, M ;
VUKMAN, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) :321-322
[5]  
Bresar M, 1989, AEQUATIONES MATH, V38, P178, DOI DOI 10.1007/BF01840003
[6]   JORDAN DERIVATIONS ON RINGS [J].
CUSACK, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :321-324
[7]  
Herstein I. N., 1957, Proc. Am. Math. Soc., V8, P1104, DOI [10.2307/2032688, 10.1090/S0002-9939-1957-0095864-2, DOI 10.1090/S0002-9939-1957-0095864-2]
[8]  
Herstein I.N., 1976, Chicago Lectures in Mathematics
[9]  
SEMRL P, 1991, STUD MATH, V97, P157
[10]  
Vukman J., 1999, COMMENT MATH U CAROL, V40, P447