Effect of static magnetic field on a thermal conductivity measurement of a molten droplet using an electromagnetic levitation technique

被引:45
作者
Tsukada, Takao [1 ]
Sugioka, Ken-ichi [1 ]
Tsutsumino, Tomoya [2 ]
Fukuyama, Hiroyuki [3 ]
Kobatake, Hidekazu [3 ]
机构
[1] Tohoku Univ, Dept Chem Engn, Aoba Ku, Sendai, Miyagi 9808579, Japan
[2] Osaka Prefecture Univ, Dept Chem Engn, Naka Ku, Osaka 5998531, Japan
[3] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, Sendai, Miyagi 9808579, Japan
关键词
Static magnetic field; Electromagnetic levitation; Droplet; Molten silicon; Convection; Numerical simulation; Thermal conductivity; MELT FLOW;
D O I
10.1016/j.ijheatmasstransfer.2009.04.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, a novel method of measuring the thermophysical properties, particularly thermal conductivity, of high-temperature molten materials using the electromagnetic levitation technique has been developed by Kobatake et al. [H. Kobatake, H. Fukuyama, I. Minato, T, Tsukada, S. Awaji, Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field, Appl. Phys. Lett. 90 (2007) 094102]; this method is based on a periodic laser-heating method, and entails the superimposing of a static magnetic field to suppress convection in an electromagnetically levitated droplet. In this work, to confirm the fact that a static magnetic field really suppresses convection in a molten silicon droplet in an electromagnetic levitator, numerical simulations of convection in the droplet and periodic laser heating in the presence of convection have been carried out. Here, the convections driven by buoyancy force, thermocapillary force due to the temperature dependence of the surface tension on the melt surface, and electromagnetic force in the droplet were considered. As a result, it was found that applying a static magnetic field of 4 T can suppress convection in a molten silicon droplet enough to measure the real thermal conductivity of molten silicon. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5152 / 5157
页数:6
相关论文
共 15 条
  • [1] Modelling electromagnetically levitated liquid droplet oscillations
    Bojarevics, V
    Pericleous, K
    [J]. ISIJ INTERNATIONAL, 2003, 43 (06) : 890 - 898
  • [2] Containerless processing in space-thermophysical property measurements using electromagnetic levitation
    Egry, I
    Diefenbach, A
    Dreier, W
    Piller, J
    [J]. INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2001, 22 (02) : 569 - 578
  • [3] Development of modulated laser calorimetry using a solid platinum sphere as a reference
    Fukuyama, Hiroyuki
    Kobatake, Hidekazu
    Takahashi, Kakeru
    Minato, Izuru
    Tsukada, Takao
    Awaji, Satoshi
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2007, 18 (07) : 2059 - 2066
  • [4] CONTAINERLESS PROCESSING IN THE STUDY OF METALLIC MELTS AND THEIR SOLIDIFICATION
    HERLACH, DM
    COCHRANE, RF
    EGRY, I
    FECHT, HJ
    GREER, AL
    [J]. INTERNATIONAL MATERIALS REVIEWS, 1993, 38 (06) : 273 - 347
  • [5] Fluid flow effects in levitated droplets
    Hyers, RW
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (02) : 394 - 401
  • [6] Noncontact measurement of thermal conductivity of liquid silicon in a static magnetic field
    Kobatake, Hidekazu
    Fukuyama, Hiroyuki
    Minato, Izuru
    Tsukada, Takao
    Awaji, Satoshi
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (09)
  • [7] Noncontact modulated laser calorimetry of liquid silicon in a static magnetic field
    Kobatake, Hidekazu
    Fukuyama, Hiroyuki
    Minato, Lzuru
    Tsukada, Takao
    Awaji, Satoshi
    [J]. JOURNAL OF APPLIED PHYSICS, 2008, 104 (05)
  • [8] ACTION OF PULSE MAGNETIC-FIELD ON MOLTEN-METAL
    KOLESNICHENKO, AF
    PODOLTSEV, AD
    KUCHERYAVAYA, IN
    [J]. ISIJ INTERNATIONAL, 1994, 34 (09) : 715 - 721
  • [9] Li BQ, 1998, MICROGRAVITY SCI TEC, V11, P134
  • [10] Partly three-dimensional global modeling of a silicon Czochralski furnace. II. Model application: Analysis of a silicon Czochralski furnace in a transverse magnetic field
    Liu, LJ
    Kakimoto, K
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (21-22) : 4492 - 4497