Perturbation from Dirichlet problem involving oscillating nonlinearities

被引:13
作者
Anello, Giovanni [1 ]
Cordaro, Giuseppe [1 ]
机构
[1] Univ Messina, Dept Math, I-98166 Messina, Italy
关键词
Dirichlet problem; weak solution; strong solution; oscillating nonlinearities;
D O I
10.1016/j.jde.2006.11.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that if the potential F(x, t) = f(0)(t) f (x, s) ds has a suitable oscillating behavior in any neighborhood of the origin (respectively +infinity), then under very mild conditions on the perturbation term g, for every k is an element of N there exists b(k) > 0 such that {-Delta u = f (x, u) + lambda g(x, u) in Omega, u = 0 on partial derivative Omega has at least k distinct weak solutions in W-0(1,2)(Omega), for every lambda is an element of R with vertical bar lambda vertical bar <= b(k). Moreover, information about the location of such solutions is also given. In fact, there exists a positive real number sigma > 0, which does not depend on lambda, such that the W-0(1,2)(Omega)-norm of each of those k solutions is not greater than sigma. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 90
页数:11
相关论文
共 50 条
  • [41] Solvability of the Dirichlet Problem with Boundary Functions from Weight Spaces
    G. M. Airapetyan
    Mathematical Notes, 2004, 76 : 599 - 605
  • [42] Solvability of the Dirichlet problem with boundary functions from weight spaces
    Airapetyan, GM
    MATHEMATICAL NOTES, 2004, 76 (5-6) : 599 - 605
  • [43] The Dirichlet Problem with Laplacian with Respect to a Measure in the Hilbert Space
    Bogdanskii, Yu. V.
    Sanzharevskii, Ya. Yu.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (06) : 818 - 826
  • [44] The Dirichlet Problem with Laplacian with Respect to a Measure in the Hilbert Space
    Yu. V. Bogdanskii
    Ya. Yu. Sanzharevskii
    Ukrainian Mathematical Journal, 2014, 66 : 818 - 826
  • [45] The Dirichlet Problem in Weight Spaces
    D. E. Apushkinskaya
    A. I. Nazarov
    Journal of Mathematical Sciences, 2004, 123 (6) : 4527 - 4538
  • [46] A Dirichlet problem for polyharmonic functions
    Heinrich Begehr
    Jinyuan Du
    Yufeng Wang
    Annali di Matematica Pura ed Applicata, 2008, 187 : 435 - 457
  • [47] On a fourth order Dirichlet Problem
    Galewski, Marek
    Smejda, Joanna
    GEORGIAN MATHEMATICAL JOURNAL, 2010, 17 (03) : 495 - 509
  • [48] The Dirichlet problem in a domain with a slit
    Subbotin, Yu. N.
    Chernykh, N. I.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2009, 15 (01): : 208 - 221
  • [49] The Dirichlet problem on quadratic surfaces
    Axler, S
    Gorkin, P
    Voss, K
    MATHEMATICS OF COMPUTATION, 2004, 73 (246) : 637 - 651
  • [50] ON THE DIRICHLET PROBLEM FOR AN ELLIPTIC EQUATION
    Gushchin, A. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2015, 19 (01): : 19 - 43