Offset equivariant networks and their applications

被引:5
作者
Cotogni, Marco [1 ]
Cusano, Claudio [1 ]
机构
[1] Univ Pavia, Dept Elect Comp & Biomed Engn, Via Ferrata 1, I-27100 Pavia, Italy
关键词
Equivariant neural networks; Convolutional neural network; Image recognition; Illuminant estimation; Inpainting; NEURAL-NETWORK;
D O I
10.1016/j.neucom.2022.06.118
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a framework for the design and implementation of offset equivariant networks, that is, neural networks that preserve in their output uniform increments in the input. In a suitable color space this kind of networks achieves equivariance with respect to the photometric transformations that characterize changes in the lighting conditions. We verified the framework on three different problems: image recognition, illuminant estimation, and image inpainting. Our experiments show that the performance of offset equivariant networks are comparable to those in the state of the art on regular data. Differently from conventional networks, however, equivariant networks do behave consistently well when the color of the illuminant changes. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 47 条
[1]  
Bianco Simone, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P81, DOI 10.1109/CVPRW.2015.7301275
[2]   Quasi-Unsupervised Color Constancy [J].
Bianco, Simone ;
Cusano, Claudio .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12204-12213
[3]   Improving CNN-based texture classification by color balancing [J].
Bianco, Simone ;
Cusano, Claudio ;
Napoletano, Paolo ;
Schettini, Raimondo .
Journal of Imaging, 2017, 3 (03)
[4]   Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution [J].
Cheng, Dongliang ;
Prasad, Dilip K. ;
Brown, Michael S. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2014, 31 (05) :1049-1058
[5]   Wavelet-Based EEG Processing for Epilepsy Detection Using Fuzzy Entropy and Associative Petri Net [J].
Chiang, Hsiu-Sen ;
Chen, Mu-Yen ;
Huang, Yu-Jhih .
IEEE ACCESS, 2019, 7 :103255-103262
[6]  
Cohen TS, 2016, PR MACH LEARN RES, V48
[7]  
de Haan P, 2021, Arxiv, DOI arXiv:2003.05425
[8]   Convergent newton method and neural network for the electric energy usage prediction [J].
de Jesus Rubio, Jose ;
Antonio Islas, Marco ;
Ochoa, Genaro ;
Ricardo Cruz, David ;
Garcia, Enrique ;
Pacheco, Jaime .
INFORMATION SCIENCES, 2022, 585 :89-112
[9]   Adapting H-infinity controller for the desired reference tracking of the sphere position in the maglev process [J].
de Jesus Rubio, Jose ;
Lughofer, Edwin ;
Pieper, Jeff ;
Cruz, Panuncio ;
Ivan Martinez, Dany ;
Ochoa, Genaro ;
Antonio Islas, Marco ;
Garcia, Enrique .
INFORMATION SCIENCES, 2021, 569 :669-686
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848