Arabic Sign Language Recognition Using Deep Learning Models

被引:2
作者
Al-Barham, Muhammad [1 ]
Abu Sa'aleek, Ahmad [1 ]
Al-Odat, Mohammad [1 ]
Hamad, Ghada [1 ]
Al-Yaman, Musa [1 ]
Elnagar, Ashraf [2 ]
机构
[1] Univ Jordan, Amman, Jordan
[2] Univ Sharjah, Sharjah, U Arab Emirates
来源
2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS) | 2022年
关键词
Arabic Sign Language (ArSL); Convolutional Neural Network (CNN); Image Classification; Deep Learning; Transfer Learning;
D O I
10.1109/ICICS55353.2022.9811162
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Arabic Sign Language (ArSL) is a family of sign languages that are spread throughout the Arab world. This paper focuses on developing a robust deep learning model that is trained on the ArSL2018 dataset to convert images of the ArSL alphabets into Arabic alphabets. The ArSL2018 dataset consists of 54,049 images of 32 alphabets collected from 40 signers. We have implemented and validated several deep learning models, including Convolutional Neural Network (CNN), VGG-16, and ResNet-18. The best result is attained by the modified ResNet-18 model which achieved an average test accuracy of 99.47%.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 18 条
[11]   ArASL: Arabic Alphabets Sign Language Dataset [J].
Latif, Ghazanfar ;
Mohammad, Nazeeruddin ;
Alghazo, Jaafar ;
AlKhalaf, Roaa ;
AlKhalaf, Rawan .
DATA IN BRIEF, 2019, 23
[12]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[13]  
Mohammadzaheri Morteza, 2007, 2007 Information, Decision and Control, P272, DOI 10.1109/IDC.2007.374562
[14]   RETRACTED: A study on Arabic sign language recognition for differently abled using advanced machine learning classifiers (Retracted Article) [J].
Mustafa, Mohammed .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (03) :4101-4115
[15]  
Nurnoby M. F., 2020, PROC 3 INT C INNOVAT, P1
[16]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[17]  
W. H. Organization, DEAFN HEAR LOSS
[18]  
Zhang AS, 2022, Arxiv, DOI arXiv:2106.11342