MATCHINGS IN REGULAR GRAPHS: MINIMIZING THE PARTITION FUNCTION

被引:0
作者
Borbenyi, Marton [1 ]
Csikvari, Peter [2 ]
机构
[1] Eotvos Lorand Univ, Budapest, Hungary
[2] Alfred Renyi Inst Math, Budapest, Hungary
关键词
matchings; matching polynomial; regular graphs;
D O I
10.22108/toc.2020.123763.1742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G on v(G) vertices let m(k)(G) denote the number of matchings of size k, and consider the partition function M-G(lambda) = Sigma(n)(k=0)m(k)(G)lambda(k). In this paper we show that if G is a d-regular graph and 0 < lambda < (4d)(-2), then 1/v(G) ln M-G(lambda) > 1/v(Kd+1) ln MKd+1(lambda). The same inequality holds true if d = 3 and lambda < 0.3575. More precise conjectures are also given.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 13 条
  • [1] Lower matching conjecture, and a new proof of Schrijver's and Gurvits's theorems
    Csikvari, Peter
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (06) : 1811 - 1844
  • [2] Independent sets, matchings, and occupancy fractions
    Davies, Ewan
    Jenssen, Matthew
    Perkins, Will
    Roberts, Barnaby
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 47 - 66
  • [3] Davies Ewan, J COMB THEORY B
  • [4] MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES
    EDMONDS, J
    [J]. JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2): : 125 - +
  • [5] Flaxman A. D., 2007, ELECTRON J COMB, V14, p#N1
  • [6] Friedland S., 2008, Electron. J. Combin, V15, P28
  • [7] Godsil C., 1993, CHAPMAN HALL MATH SE, V6
  • [8] Gurvits L., 2011, ARXIV11062844
  • [9] On the density of triangles and squares in regular finite and unimodular random graphs
    Harangi, Viktor
    [J]. COMBINATORICA, 2013, 33 (05) : 531 - 548
  • [10] THEORY OF MONOMER-DIMER SYSTEMS
    HEILMANN, OJ
    LIEB, EH
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 25 (03) : 190 - &