Medical implications of technical accuracy in genome sequencing

被引:96
作者
Goldfeder, Rachel L. [1 ,3 ]
Priest, James R. [3 ,5 ]
Zook, Justin M. [2 ]
Grove, Megan E. [1 ,3 ]
Waggott, Daryl [1 ,3 ]
Wheeler, Matthew T. [1 ,3 ]
Salit, Marc [2 ]
Ashley, Euan A. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[2] NIST, Genome Scale Measurements Grp, Gaithersburg, MD 20899 USA
[3] Stanford Univ, Stanford Ctr Inherited Cardiovasc Dis, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Pediat, Stanford, CA 94305 USA
关键词
WHOLE-EXOME CAPTURE; CLINICAL EXOME; DE-NOVO; IDENTIFICATION; VARIANTS; MUTATION; SENSITIVITY; PERFORMANCE; DIAGNOSIS; PATIENT;
D O I
10.1186/s13073-016-0269-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: As whole exome sequencing (WES) and whole genome sequencing (WGS) transition from research tools to clinical diagnostic tests, it is increasingly critical for sequencing methods and analysis pipelines to be technically accurate. The Genome in a Bottle Consortium has recently published a set of benchmark SNV, indel, and homozygous reference genotypes for the pilot whole genome NIST Reference Material based on the NA12878 genome. Methods: We examine the relationship between human genome complexity and genes/variants reported to be associated with human disease. Specifically, we map regions of medical relevance to benchmark regions of high or low confidence. We use benchmark data to assess the sensitivity and positive predictive value of two representative sequencing pipelines for specific classes of variation. Results: We observe that the accuracy of a variant call depends on the genomic region, variant type, and read depth, and varies by analytical pipeline. We find that most false negative WGS calls result from filtering while most false negative WES variants relate to poor coverage. We find that only 74.6 % of the exonic bases in ClinVar and OMIM genes and 82.1 % of the exonic bases in ACMG-reportable genes are found in high-confidence regions. Only 990 genes in the genome are found entirely within high-confidence regions while 593 of 3,300 ClinVar/OMIM genes have less than 50 % of their total exonic base pairs in high-confidence regions. We find greater than 77 % of the pathogenic or likely pathogenic SNVs currently in ClinVar fall within high-confidence regions. We identify sites that are prone to sequencing errors, including thousands present in publicly available variant databases. Finally, we examine the clinical impact of mandatory reporting of secondary findings, highlighting a false positive variant found in BRCA2. Conclusions: Together, these data illustrate the importance of appropriate use and continued improvement of technical benchmarks to ensure accurate and judicious interpretation of next-generation DNA sequencing results in the clinical setting.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Limitations of next-generation genome sequence assembly [J].
Alkan, Can ;
Sajjadian, Saba ;
Eichler, Evan E. .
NATURE METHODS, 2011, 8 (01) :61-65
[2]  
[Anonymous], 2013, ARXIV13033997QBIOGN
[3]   Clinical assessment incorporating a personal genome [J].
Ashley, Euan A. ;
Butte, Atul J. ;
Wheeler, Matthew T. ;
Chen, Rong ;
Klein, Teri E. ;
Dewey, Frederick E. ;
Dudley, Joel T. ;
Ormond, Kelly E. ;
Pavlovic, Aleksandra ;
Morgan, Alexander A. ;
Pushkarev, Dmitry ;
Neff, Norma F. ;
Hudgins, Louanne ;
Gong, Li ;
Hodges, Laura M. ;
Berlin, Dorit S. ;
Thorn, Caroline F. ;
Sangkuhl, Katrin ;
Hebert, Joan M. ;
Woon, Mark ;
Sagreiya, Hersh ;
Whaley, Ryan ;
Knowles, Joshua W. ;
Chou, Michael F. ;
Thakuria, Joseph V. ;
Rosenbaum, Abraham M. ;
Zaranek, Alexander Wait ;
Church, George M. ;
Greely, Henry T. ;
Quake, Stephen R. ;
Altman, Russ B. .
LANCET, 2010, 375 (9725) :1525-1535
[4]  
Aziz N, 2012, J MOL DIAGN, V14, P742
[5]   BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity [J].
Cantarel, Brandi L. ;
Weaver, Daniel ;
McNeill, Nathan ;
Zhang, Jianhua ;
Mackey, Aaron J. ;
Reese, Justin .
BMC BIOINFORMATICS, 2014, 15
[6]   Resolving the complexity of the human genome using single-molecule sequencing [J].
Chaisson, Mark J. P. ;
Huddleston, John ;
Dennis, Megan Y. ;
Sudmant, Peter H. ;
Malig, Maika ;
Hormozdiari, Fereydoun ;
Antonacci, Francesca ;
Surti, Urvashi ;
Sandstrom, Richard ;
Boitano, Matthew ;
Landolin, Jane M. ;
Stamatoyannopoulos, John A. ;
Hunkapiller, Michael W. ;
Korlach, Jonas ;
Eichler, Evan E. .
NATURE, 2015, 517 (7536) :608-U163
[7]   Genetic diagnosis by whole exome capture and massively parallel DNA sequencing [J].
Choi, Murim ;
Scholl, Ute I. ;
Ji, Weizhen ;
Liu, Tiewen ;
Tikhonova, Irina R. ;
Zumbo, Paul ;
Nayir, Ahmet ;
Bakkaloglu, Aysin ;
Ozen, Seza ;
Sanjad, Sami ;
Nelson-Williams, Carol ;
Farhi, Anita ;
Mane, Shrikant ;
Lifton, Richard P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) :19096-19101
[8]   Distinguishing protein-coding and noncoding genes in the human genome [J].
Clamp, Michele ;
Fry, Ben ;
Kamal, Mike ;
Xie, Xiaohui ;
Cuff, James ;
Lin, Michael F. ;
Kellis, Manolis ;
Lindblad-Toh, Kerstin ;
Lander, Eric S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (49) :19428-19433
[9]   Performance comparison of exome DNA sequencing technologies [J].
Clark, Michael J. ;
Chen, Rui ;
Lam, Hugo Y. K. ;
Karczewski, Konrad J. ;
Chen, Rong ;
Euskirchen, Ghia ;
Butte, Atul J. ;
Snyder, Michael .
NATURE BIOTECHNOLOGY, 2011, 29 (10) :908-U206
[10]  
Cleary JG, 2015, BIORXIV, DOI DOI 10.1101/023754