Convex Komlo's sets in Banach function spaces

被引:9
作者
Day, Jerry B. [2 ]
Lennard, Chris [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Komlos' Theorem; Converse to Komlos' Theorem; Banach function space; Fatou property; Finitely integrable; L-p-spaces; Lorentz; Orlicz and Orlicz-Lorentz spaces; Subsequences; Cesaro convergence; STEINHAUS;
D O I
10.1016/j.jmaa.2009.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1967 Komlos proved that for any sequence {f(n)}(n) in L-1(mu), with parallel to f(n)parallel to <= M < infinity (where it is a probability measure), there exists a subsequence {g(n)}(n) of {f(n)}(n) and a function g is an element of L-1(mu) such that for any further subsequence {h(n)}(n) of {g(n)}(n). 1/n Sigma(n)(i=1)hi ->(n)g mu-a.e. Later. Lermard proved that every convex subset of L-1(mu) satisfying the conclusion of the previous theorem is norm bounded. In this paper, we isolate a very general class of Banach function spaces (those satisfying the Fatou property), to which we generalize Lennard's converse to Komlos' Theorem. We also extend Komlos' Theorem itself to a broad class of Banach function spaces: those that satisfy the Fatou property and are finitely integrable (or even weakly finitely integrable), when the measure mu is sigma-finite. Banach function spaces satisfying the hypotheses of both theorems include L-p(R) (1 <= p <= infinity, mu = Lebesgue measure), Lorentz, Orlicz and Orlicz-Lorentz spaces. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
[41]   EXTENSION OF LIPSCHITZ-TYPE OPERATORS ON BANACH FUNCTION SPACES [J].
Cavalcante, Wasthenny, V ;
Rueda, Pilar ;
Sanchez-Perez, Enrique A. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (01) :343-364
[42]   ANOTHER PROOF OF CHARACTERIZATION OF BMO VIA BANACH FUNCTION SPACES [J].
Izuki, Mitsuo .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2016, 57 (01) :103-109
[43]   Dominated Compactness Theorem in Banach Function Spaces and its Applications [J].
Rafeiro, Humberto ;
Samko, Stefan .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (04) :669-681
[44]   Optimal extensions of compactness properties for operators on Banach function spaces [J].
Calabuig, J. M. ;
Jimenez Fernandez, E. ;
Juan, M. A. ;
Sanchez Perez, E. A. .
TOPOLOGY AND ITS APPLICATIONS, 2016, 203 :57-66
[45]   COMMUTATORS OF CONVOLUTION TYPE OPERATORS ON SOME BANACH FUNCTION SPACES [J].
Karlovich, Alexei Yu. .
ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (04) :191-205
[46]   On the essential norms of Toeplitz operators on abstract Hardy spaces built upon Banach function spaces [J].
Karlovych, Oleksiy ;
Shargorodsky, Eugene .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2025, 31 (01)
[47]   The fatou property in p-convex banach lattices [J].
Curbera, Guillermo P. ;
Ricker, Werner J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :287-294
[48]   Completability and optimal factorization norms in tensor products of Banach function spaces [J].
J. M. Calabuig ;
M. Fernández-Unzueta ;
F. Galaz-Fontes ;
E. A. Sánchez-Pérez .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 :3513-3530
[49]   THE SUPPORT LOCALIZATION PROPERTY OF THE STRONGLY EMBEDDED SUBSPACES OF BANACH FUNCTION SPACES [J].
Rueda, Pilar ;
Sanchez Perez, Enrique A. .
STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2015, 52 (04) :559-576
[50]   Completability and optimal factorization norms in tensor products of Banach function spaces [J].
Calabuig, J. M. ;
Fernandez-Unzueta, M. ;
Galaz-Fontes, F. ;
Sanchez-Perez, E. A. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) :3513-3530