Convex Komlo's sets in Banach function spaces

被引:9
作者
Day, Jerry B. [2 ]
Lennard, Chris [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Komlos' Theorem; Converse to Komlos' Theorem; Banach function space; Fatou property; Finitely integrable; L-p-spaces; Lorentz; Orlicz and Orlicz-Lorentz spaces; Subsequences; Cesaro convergence; STEINHAUS;
D O I
10.1016/j.jmaa.2009.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1967 Komlos proved that for any sequence {f(n)}(n) in L-1(mu), with parallel to f(n)parallel to <= M < infinity (where it is a probability measure), there exists a subsequence {g(n)}(n) of {f(n)}(n) and a function g is an element of L-1(mu) such that for any further subsequence {h(n)}(n) of {g(n)}(n). 1/n Sigma(n)(i=1)hi ->(n)g mu-a.e. Later. Lermard proved that every convex subset of L-1(mu) satisfying the conclusion of the previous theorem is norm bounded. In this paper, we isolate a very general class of Banach function spaces (those satisfying the Fatou property), to which we generalize Lennard's converse to Komlos' Theorem. We also extend Komlos' Theorem itself to a broad class of Banach function spaces: those that satisfy the Fatou property and are finitely integrable (or even weakly finitely integrable), when the measure mu is sigma-finite. Banach function spaces satisfying the hypotheses of both theorems include L-p(R) (1 <= p <= infinity, mu = Lebesgue measure), Lorentz, Orlicz and Orlicz-Lorentz spaces. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [21] Topological duals of locally convex function spaces
    Pennanen, Teemu
    Perkkioe, Ari-Pekka
    POSITIVITY, 2022, 26 (01)
  • [22] NONCOMPACTNESS OF FOURIER CONVOLUTION OPERATORS ON BANACH FUNCTION SPACES
    Fernandes, Claudio A.
    Karlovich, Alexei Y.
    Karlovich, Yuri, I
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04): : 553 - 561
  • [23] The weak Banach-Saks property for function spaces
    Curbera, Guillermo P.
    Ricker, Werner J.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) : 657 - 671
  • [24] Convergence of weighted averages of martingales in Banach function spaces
    Kikuchi, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) : 39 - 56
  • [25] On some inequalities for Doob decompositions in Banach function spaces
    Kikuchi, Masato
    MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) : 865 - 887
  • [26] On some inequalities for martingale transforms in Banach function spaces
    Kikuchi, Masato
    ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (1-2): : 289 - 306
  • [27] On some inequalities for Doob decompositions in Banach function spaces
    Masato Kikuchi
    Mathematische Zeitschrift, 2010, 265 : 865 - 887
  • [28] Regularity of Continuous Linear Operators on Banach Function Spaces
    JIANG Nian-sheng
    2.Department of Applied Mathematics
    数学季刊, 2004, (01) : 51 - 56
  • [29] ON THE DENSITY OF LAGUERRE FUNCTIONS IN SOME BANACH FUNCTION SPACES
    Fernandes, Claudio
    Karlovych, Oleksiy
    Valente, Marcio
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2022, 13 (02) : 37 - 45
  • [30] Lattice Lipschitz superposition operators on Banach function spaces
    Arnau, Roger
    Calabuig, Jose M.
    Erdogan, Ezgi
    Perez, Enrique A. Sanchez
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)