Convex Komlo's sets in Banach function spaces

被引:9
作者
Day, Jerry B. [2 ]
Lennard, Chris [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Komlos' Theorem; Converse to Komlos' Theorem; Banach function space; Fatou property; Finitely integrable; L-p-spaces; Lorentz; Orlicz and Orlicz-Lorentz spaces; Subsequences; Cesaro convergence; STEINHAUS;
D O I
10.1016/j.jmaa.2009.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1967 Komlos proved that for any sequence {f(n)}(n) in L-1(mu), with parallel to f(n)parallel to <= M < infinity (where it is a probability measure), there exists a subsequence {g(n)}(n) of {f(n)}(n) and a function g is an element of L-1(mu) such that for any further subsequence {h(n)}(n) of {g(n)}(n). 1/n Sigma(n)(i=1)hi ->(n)g mu-a.e. Later. Lermard proved that every convex subset of L-1(mu) satisfying the conclusion of the previous theorem is norm bounded. In this paper, we isolate a very general class of Banach function spaces (those satisfying the Fatou property), to which we generalize Lennard's converse to Komlos' Theorem. We also extend Komlos' Theorem itself to a broad class of Banach function spaces: those that satisfy the Fatou property and are finitely integrable (or even weakly finitely integrable), when the measure mu is sigma-finite. Banach function spaces satisfying the hypotheses of both theorems include L-p(R) (1 <= p <= infinity, mu = Lebesgue measure), Lorentz, Orlicz and Orlicz-Lorentz spaces. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
[21]   Topological duals of locally convex function spaces [J].
Pennanen, Teemu ;
Perkkioe, Ari-Pekka .
POSITIVITY, 2022, 26 (01)
[22]   NONCOMPACTNESS OF FOURIER CONVOLUTION OPERATORS ON BANACH FUNCTION SPACES [J].
Fernandes, Claudio A. ;
Karlovich, Alexei Y. ;
Karlovich, Yuri, I .
ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04) :553-561
[23]   The weak Banach-Saks property for function spaces [J].
Curbera, Guillermo P. ;
Ricker, Werner J. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :657-671
[24]   Convergence of weighted averages of martingales in Banach function spaces [J].
Kikuchi, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 244 (01) :39-56
[25]   On some inequalities for Doob decompositions in Banach function spaces [J].
Kikuchi, Masato .
MATHEMATISCHE ZEITSCHRIFT, 2010, 265 (04) :865-887
[26]   On some inequalities for martingale transforms in Banach function spaces [J].
Kikuchi, Masato .
ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (1-2) :289-306
[27]   On some inequalities for Doob decompositions in Banach function spaces [J].
Masato Kikuchi .
Mathematische Zeitschrift, 2010, 265 :865-887
[28]   Regularity of Continuous Linear Operators on Banach Function Spaces [J].
JIANG Niansheng Chen ZiliDepartment of Computer Science and Mathematics Chongqing Three Gorges College Chongqing ChinaDepartment of Applied Mathematics Southwest Jiaotong University Chengdu China .
数学季刊, 2004, (01) :51-56
[29]   ON THE DENSITY OF LAGUERRE FUNCTIONS IN SOME BANACH FUNCTION SPACES [J].
Fernandes, Claudio ;
Karlovych, Oleksiy ;
Valente, Marcio .
JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2022, 13 (02) :37-45
[30]   Lattice Lipschitz superposition operators on Banach function spaces [J].
Arnau, Roger ;
Calabuig, Jose M. ;
Erdogan, Ezgi ;
Perez, Enrique A. Sanchez .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)