Convex Komlo's sets in Banach function spaces

被引:9
|
作者
Day, Jerry B. [2 ]
Lennard, Chris [1 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
Komlos' Theorem; Converse to Komlos' Theorem; Banach function space; Fatou property; Finitely integrable; L-p-spaces; Lorentz; Orlicz and Orlicz-Lorentz spaces; Subsequences; Cesaro convergence; STEINHAUS;
D O I
10.1016/j.jmaa.2009.12.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1967 Komlos proved that for any sequence {f(n)}(n) in L-1(mu), with parallel to f(n)parallel to <= M < infinity (where it is a probability measure), there exists a subsequence {g(n)}(n) of {f(n)}(n) and a function g is an element of L-1(mu) such that for any further subsequence {h(n)}(n) of {g(n)}(n). 1/n Sigma(n)(i=1)hi ->(n)g mu-a.e. Later. Lermard proved that every convex subset of L-1(mu) satisfying the conclusion of the previous theorem is norm bounded. In this paper, we isolate a very general class of Banach function spaces (those satisfying the Fatou property), to which we generalize Lennard's converse to Komlos' Theorem. We also extend Komlos' Theorem itself to a broad class of Banach function spaces: those that satisfy the Fatou property and are finitely integrable (or even weakly finitely integrable), when the measure mu is sigma-finite. Banach function spaces satisfying the hypotheses of both theorems include L-p(R) (1 <= p <= infinity, mu = Lebesgue measure), Lorentz, Orlicz and Orlicz-Lorentz spaces. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:129 / 136
页数:8
相关论文
共 50 条
  • [1] APPROXIMATELY CONVEX SETS IN BANACH SPACES
    VLASOV, LP
    DOKLADY AKADEMII NAUK SSSR, 1965, 163 (01): : 18 - &
  • [2] On remotality for convex sets in Banach spaces
    Martin, Miguel
    Rao, T. S. S. R. K.
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) : 392 - 396
  • [3] CONVEX GENERATION OF CONVEX BOREL SETS IN BANACH SPACES
    PREISS, D
    MATHEMATIKA, 1973, 20 (39) : 1 - 3
  • [4] On nested sequences of convex sets in Banach spaces
    Bernardes, Nilson C., Jr.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 558 - 561
  • [5] On nested sequences of convex sets in Banach spaces
    Castillo, Jesus M. F.
    Gonzalez, Manuel
    Papini, Pier Luigi
    STUDIA MATHEMATICA, 2014, 222 (01) : 19 - 28
  • [6] The Convex Sets in Banach Spaces and Polynomial Approximation
    Elshreif, Ashraf S.
    Ibrahim, Habeeb
    Dafaalla, Mohammed E.
    Osman, Osman Abdalla Adam
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [7] A Characterization of Polynomially Convex Sets in Banach Spaces
    Abtahi, Mortaza
    Farhangi, Sara
    RESULTS IN MATHEMATICS, 2017, 72 (04) : 2013 - 2021
  • [8] A Characterization of Polynomially Convex Sets in Banach Spaces
    Mortaza Abtahi
    Sara Farhangi
    Results in Mathematics, 2017, 72 : 2013 - 2021
  • [9] Convex sets in Banach spaces and a problem of Rolewicz
    Granero, AS
    Sevilla, MJ
    Moreno, JP
    STUDIA MATHEMATICA, 1998, 129 (01) : 19 - 29
  • [10] EXTREMAL STRUCTURE OF CONVEX SETS IN BANACH SPACES
    ZIZLER, V
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1971, 19 (06): : 451 - &