An n-dimensional Borg-Levinson theorem for singular potentials

被引:27
|
作者
Päivärinta, L
Serov, V
机构
[1] Moscow MV Lomonosov State Univ, Dept Computat Math & Cybernet, Moscow 119899, Russia
[2] Univ Oulu, Dept Math Sci, FIN-90570 Oulu, Finland
关键词
D O I
10.1016/S0196-8858(02)00027-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove in this paper that the boundary spectral data, i.e. the Dirichlet eigenvalues and normal derivatives of the eigenfunctions at the boundary uniquely determines a potential in L-P on bounded domains. This result generalizes the result of Nachman, Sylvester and Uhlmann to unbounded potentials. This result can be viewed as a generalization of the classical one-dimensional Borg-Levinson theorem. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:509 / 520
页数:12
相关论文
共 50 条
  • [41] A new proof of the n-dimensional Pythagorean theorem
    Tran Quang Hung
    MATHEMATICAL GAZETTE, 2022, 106 (565): : 136 - 137
  • [42] MORI THEOREM FOR N-DIMENSIONAL QUASICONFORMAL MAPPINGS
    FEHLMANN, R
    VUORINEN, M
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1988, 13 (01): : 111 - 124
  • [43] AN N-DIMENSIONAL CASORATI-WEIERSTRASS THEOREM
    WU, HH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 131 - &
  • [44] An n-dimensional version of Steinhaus' chessboard theorem
    Tkacz, Przemyslaw
    Turzanski, Marian
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (04) : 354 - 361
  • [45] Tietze Extension Theorem for n-dimensional Spaces
    Pak, Karol
    FORMALIZED MATHEMATICS, 2014, 22 (01): : 11 - 19
  • [46] ADDITIVITY THEOREM FOR N-DIMENSIONAL ASYMPTOTIC DENSITY
    FREEDMAN, AR
    PACIFIC JOURNAL OF MATHEMATICS, 1973, 49 (02) : 357 - 363
  • [47] THE FROBENIUS THEOREM ON N-DIMENSIONAL QUANTUM HYPERPLANE
    Ciupala, C.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2006, 75 (01): : 21 - 30
  • [48] A class of singular n-dimensional impulsive Neumann systems
    Li, Ping
    Feng, Meiqiang
    Wang, Minmin
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [49] A class of singular n-dimensional impulsive Neumann systems
    Ping Li
    Meiqiang Feng
    Minmin Wang
    Advances in Difference Equations, 2018
  • [50] Another n-Dimensional Generalization of Pompeiu's Theorem
    Al-Afifi, Ghada
    Hajja, Mowaffaq
    Hamdan, Ahmad
    AMERICAN MATHEMATICAL MONTHLY, 2018, 125 (07): : 612 - 622