Gevrey genericity of Arnold diffusion in a priori unstable Hamiltonian systems
被引:1
|
作者:
Chen, Qinbo
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Chen, Qinbo
[1
,2
]
Cheng, Chong-Qing
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Peoples R ChinaNanjing Univ, Dept Math, Nanjing 210093, Peoples R China
Cheng, Chong-Qing
[1
]
机构:
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
Arnold diffusion;
genericity;
Gevrey functions;
a priori unstable;
LARGE GAP PROBLEM;
INVARIANT-MANIFOLDS;
GEOMETRIC MECHANISM;
CONNECTING ORBITS;
UNBOUNDED ENERGY;
STABILITY;
PERTURBATIONS;
INSTABILITY;
RESONANCES;
DYNAMICS;
D O I:
10.1088/1361-6544/abb44f
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
It is well known that under generic C(R) smooth perturbations, the phenomenon of global instability, known as Arnold diffusion, exists in a priori unstable Hamiltonian systems. In this paper, by using variational methods, we will prove that under generic Gevrey smooth perturbations, Arnold diffusion still exists in the a priori unstable Hamiltonian systems of two and a half degrees of freedom.
机构:
Russian Acad Sci, Steklov Math Inst, Moscow, Russia
Moscow MV Lomonosov State Univ, Moscow, RussiaRussian Acad Sci, Steklov Math Inst, Moscow, Russia
机构:
Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, ItalyUniv Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
Guzzo, Massimiliano
Efthymiopoulos, Christos
论文数: 0引用数: 0
h-index: 0
机构:
Acad Athens, Res Ctr Astron & Appl Math, Soranou Efessiou 4, Athens 11527, GreeceUniv Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
Efthymiopoulos, Christos
Paez, Rocio I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, ItalyUniv Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy