Symmetry and control: spatially extended chaotic systems

被引:10
|
作者
Grigoriev, RO [1 ]
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
来源
PHYSICA D | 2000年 / 140卷 / 3-4期
基金
美国国家科学基金会;
关键词
control; symmetry; spatiotemporal chaos;
D O I
10.1016/S0167-2789(00)00014-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent paper [Phys. Rev. E 57 (1998) 1550] it was demonstrated that the symmetries of the evolution equation and the target state have a profound effect on controlling the chaotic behavior. In the present paper we extend these results to the cases of time-periodic target trajectories and inexact symmetries, and apply the developed formalism to the problem of controlling spatiotemporal chaos. We use the example of a lattice dynamical system in arbitrary spatial dimension to show that there exists an intimate relationship between the geometry of an extended system and the geometry of feedback control. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 192
页数:22
相关论文
共 50 条
  • [1] Modeling chaotic and spatially extended systems
    Merkwirth, C
    Parlitz, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S113 - S116
  • [2] Chaotic transients in spatially extended systems
    Tel, Tamas
    Lai, Ying-Cheng
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 460 (06): : 245 - 275
  • [3] Scaling properties of spatially extended chaotic systems
    Szendro, I. G.
    Lopez, J. M.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2007, 143 : 13 - 18
  • [4] Scaling properties of spatially extended chaotic systems
    I. G. Szendro
    J. M. López
    The European Physical Journal Special Topics, 2007, 143 : 13 - 18
  • [5] Synchronization of spatially extended chaotic systems with asymmetric coupling
    Boccaletti, S
    Mendoza, C
    Bragard, J
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 411 - 417
  • [6] Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions
    Cencini, M.
    Tessone, C. J.
    Torcini, A.
    CHAOS, 2008, 18 (03)
  • [7] Chaotic waves and phase synchronization in spatially extended ecological systems
    Blasius, B
    Stone, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 221 - 225
  • [8] Asymmetric coupling effects in the synchronization of spatially extended chaotic systems
    Bragard, J
    Boccaletti, S
    Mancini, H
    PHYSICAL REVIEW LETTERS, 2003, 91 (06)
  • [9] Dynamic scaling of bred vectors in spatially extended chaotic systems
    Primo, C.
    Szendro, I. G.
    Rodriguez, M. A.
    Lopez, J. M.
    EUROPHYSICS LETTERS, 2006, 76 (05): : 767 - 773
  • [10] How often are chaotic transients in spatially extended ecological systems?
    Dhamala, M
    Lai, YC
    Holt, RD
    PHYSICS LETTERS A, 2001, 280 (5-6) : 297 - 302