Path-dependent American options

被引:0
|
作者
Chevalier, Etienne [1 ]
Vath, Vathana Ly [1 ,2 ]
Mnif, Mohamed [3 ]
机构
[1] Univ Evry Val dEssonne, Lab Math & Modelisat Evry LaMME, 23 Blvd France, F-91037 Evry, France
[2] ENSIIE, 1 Sq Resistance, F-91000 Evry, France
[3] Univ Tunis El Manar, ENIT LAMSIN, Rue Bechir Salem Belkhiria Campus Univ,BP 37, Tunis 1002, Tunisia
关键词
stochastic control; path-dependent viscosity solutions; numerical scheme; variational inequalities; American option; VISCOSITY SOLUTIONS; OBSTACLE PROBLEMS;
D O I
10.21314/JCF.2019.369
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we investigate a path-dependent American option problem and provide an efficient and implementable numerical scheme for the solution of its associated path-dependent variational inequality. We obtain the viscosity characterization of our value function and suggest a monotone, stable and consistent numerical scheme, the convergence of which is proven thanks to the uniqueness property. We further enrich our study by providing and implementing a numerical algorithm. Some numerical results are also included.
引用
收藏
页码:61 / 95
页数:35
相关论文
共 50 条
  • [1] MULTIASSET PATH-DEPENDENT OPTIONS
    BOYLE, PP
    JOURNAL OF FINANCE, 1993, 48 (03): : 1071 - 1071
  • [2] An Analysis of Path-Dependent Options
    Frank Wusterhausen
    Journal of Optimization Theory and Applications, 2015, 167 : 874 - 887
  • [3] An Analysis of Path-Dependent Options
    Wusterhausen, Frank
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) : 874 - 887
  • [4] Bounds for path-dependent options
    Brown D.J.
    Ibragimov R.
    Walden J.
    Annals of Finance, 2015, 11 (3-4) : 433 - 451
  • [5] Pricing of path-dependent American options by Monte Carlo simulation
    Fujiwara, Hailme
    Kijima, Masaaki
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2007, 31 (11): : 3478 - 3502
  • [6] Comparison results for path-dependent options
    Bergenthum, Jan
    Rueschendorf, Ludger
    STATISTICS & RISK MODELING, 2008, 26 (01) : 53 - 72
  • [7] EFFICIENT HEDGING OF PATH-DEPENDENT OPTIONS
    Kolkiewicz, Adam W.
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (05)
  • [8] PATH-DEPENDENT OPTIONS AND TRANSACTION COSTS
    DEWYNNE, JN
    WHALLEY, AE
    WILMOTT, P
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1994, 347 (1684): : 517 - 529
  • [9] Convergence of binomial tree methods for European/American path-dependent options
    Jiang, LS
    Dai, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 1094 - 1109
  • [10] Valuing of timer path-dependent options
    Ha, Mijin
    Kim, Donghyun
    Yoon, Ji-Hun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 215 : 208 - 227