Magnetic and electron transport properties of Co2Si nanomagnets

被引:6
作者
Balasubramanian, Balamurugan [1 ,2 ]
George, Tom A. [1 ,2 ]
Manchanda, Priyanka [3 ]
Pahari, Rabindra [1 ,2 ]
Ullah, Ahsan [1 ,2 ]
Skomski, Ralph [1 ,2 ]
Sellmyer, David J. [1 ,2 ]
机构
[1] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
[3] Howard Univ, Dept Phys & Astron, Washington, DC 20059 USA
基金
美国国家科学基金会;
关键词
Silicon compounds - Transport properties - Anisotropy - Spin polarization - Inert gases - Cobalt compounds - Silicon - Saturation magnetization - Crystal atomic structure - Nanoclusters;
D O I
10.1103/PhysRevMaterials.5.024402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetotransport and ferromagnetism in thin films of Co2Si nanoclusters are investigated experimentally and theoretically. The nanoclusters are fabricated by an inert-gas condensation-type cluster-deposition method and have an average size of 11.3 nm. Unlike the bulk Co2Si that exhibits a very weak net magnetic moment only below 10 K, the nanoclusters exhibit room-temperature ferromagnetism with a substantial saturation magnetization. Key features of the system are its closeness to the Stoner transition, magnetic moments induced by spin polarization starting from surface atoms, and nonuniaxial anisotropy associated with the orthorhombic crystal structure of Co2Si. A method is introduced to determine the effective anisotropy using the experimental magnetization data of this complex system and its relationship with the two lowest-order nonuniaxial anisotropy constants. On decreasing temperature from 300 K, the nanoclusters show electron-transport properties unusual for a ferromagnetic metal, including an increase of Hall resistivity and a nonmonotonic change of negative magnetoresistance with a peak at around 100 K. The underlying physics is explained on the basis of the large polarization of surface spins and variation in the degree of their misalignments due to temperature-dependent effective anisotropy.
引用
收藏
页数:9
相关论文
共 67 条
[1]  
[Anonymous], 1991, ELECT CORRELATIONS M, DOI DOI 10.1007/978-3-642-57809-0
[2]  
[Anonymous], 1992, Statistical Mechanics of Phase Transitions
[3]   Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si [J].
Balasubramanian, Balamurugan ;
Manchanda, Priyanka ;
Pahari, Rabindra ;
Chen, Zhen ;
Zhang, Wenyong ;
Valloppilly, Shah R. ;
Li, Xingzhong ;
Sarella, Anandakumar ;
Yue, Lanping ;
Ullah, Ahsan ;
Dev, Pratibha ;
Muller, David A. ;
Skomski, Ralph ;
Hadjipanayis, George C. ;
Sellmyer, David J. .
PHYSICAL REVIEW LETTERS, 2020, 124 (05)
[4]   High-coercivity magnetism in nanostructures with strong easy-plane anisotropy [J].
Balasubramanian, Balamurugan ;
Manchanda, Priyanka ;
Skomski, Ralph ;
Mukherjee, Pinaki ;
Valloppilly, Shah R. ;
Das, Bhaskar ;
Hadjipanayis, George C. ;
Sellmyer, David J. .
APPLIED PHYSICS LETTERS, 2016, 108 (15)
[5]   Unusual spin correlations in a nanomagnet [J].
Balasubramanian, Balamurugan ;
Manchanda, Priyanka ;
Skomski, Ralph ;
Mukherjee, Pinaki ;
Das, Bhaskar ;
George, T. A. ;
Hadjipanayis, George C. ;
Sellmyer, David J. .
APPLIED PHYSICS LETTERS, 2015, 106 (24)
[6]   Magnetization studies of binary and ternary Co-rich phases of the Co-Si-B system [J].
Bormio-Nunes, Cristina ;
Nunes, Carlos Angelo ;
Coelho, Adelino A. ;
Sodero Toledo Faria, Maria Ismenia ;
Suzuki, Paulo Atsushi ;
Coelho, Gilberto Carvalho .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 508 (01) :5-8
[7]  
Chikazumi S., 1964, PHYS MAGNETISM
[8]   Effects of atomic scale imperfection at the interfaces of CoSi2 and Si (100) on Schottky barrier contacts [J].
Chiou, Chien-Jyun ;
Chiu, Shao-Pin ;
Lin, Juhn-Jong ;
Chou, Yi-Chia .
CRYSTENGCOMM, 2015, 17 (23) :4276-4280
[9]   Magnetoresistance of chromium dioxide powder compacts [J].
Coey, JMD ;
Berkowitz, AE ;
Balcells, L ;
Putris, FF ;
Barry, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3815-3818
[10]   Resistive and magnetoresistive properties of compacted CrO2 powders with different types of intergranular dielectric layers [J].
Dalakova, N. V. ;
Belevtsev, B. I. ;
Beliayev, E. Yu. ;
Bludov, A. N. ;
Pashchenko, V. N. ;
Osmolovsky, M. G. ;
Osmolovskaya, O. M. .
LOW TEMPERATURE PHYSICS, 2012, 38 (12) :1121-1128