The existence of subdigraphs with orthogonal factorizations in digraphs

被引:0
作者
Zhou, Sizhong [1 ]
Pan, Quanru [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Jiangsu, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 02期
关键词
network; digraph; subdigraph; factor; orthogonal factorization; TOUGHNESS CONDITION; FRACTIONAL (G; GRAPHS; (G; F)-FACTORIZATIONS; (K;
D O I
10.3934/math.2021075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a [0, k(1) + k(2) + ... + k(m) - n + 1]-digraph and H-1, H-2, ..., H-r be r vertex-disjoint n-subdigraphs of G, where m, n, r and k(i) (1 <= i <= m) are positive integers satisfying 1 <= n <= m and k(1) >= k(2) >= ... k(m) >= r + 1. In this article, we verify that there exists a subdigraph R of G such that R possesses a [0, k(i)](1)(n) -factorization orthogonal to every H-i for 1 <= i <= r.
引用
收藏
页码:1223 / 1233
页数:11
相关论文
共 34 条
  • [1] Alspach B., 1992, Contemporary Design Theory: A Collection of Surveys, P13
  • [2] Sufficient conditions for graphs to have (g,f)-factors
    Egawa, Y
    Kano, M
    [J]. DISCRETE MATHEMATICS, 1996, 151 (1-3) : 87 - 90
  • [3] Euler L, 1923, L EULERI OPERA OMN 1, V7, P291
  • [4] Orthogonal factorizations of graphs
    Feng, HD
    Liu, GZ
    [J]. JOURNAL OF GRAPH THEORY, 2002, 40 (04) : 267 - 276
  • [5] Toughness Condition for a Graph to be All Fractional (g, f, n)-Critical Deleted
    Gao, Wei
    Wang, Weifan
    Dimitrov, Darko
    [J]. FILOMAT, 2019, 33 (09) : 2735 - 2746
  • [6] A Toughness Condition for Fractional (k, m)-deleted Graphs Revisited
    Gao, Wei
    Guirao, Juan L. G.
    Chen, Yao Jun
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (07) : 1227 - 1237
  • [7] Horton J. D., 1981, Aequationes Math, V22, P56
  • [8] Stability number and [a,b]-factors in graphs
    Kouider, M
    Lonc, Z
    [J]. JOURNAL OF GRAPH THEORY, 2004, 46 (04) : 254 - 264
  • [9] Lam PCB, 2000, NETWORKS, V35, P274, DOI 10.1002/1097-0037(200007)35:4<274::AID-NET6>3.0.CO
  • [10] 2-6