Multipartite classical and quantum secrecy monotones

被引:33
作者
Cerf, NJ
Massar, S
Schneider, S
机构
[1] Free Univ Brussels, Ecole Polytech, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Serv Phys Theor, B-1050 Brussels, Belgium
[3] Univ Toronto, Dept Chem, Toronto, ON M5S 3H6, Canada
来源
PHYSICAL REVIEW A | 2002年 / 66卷 / 04期
关键词
D O I
10.1103/PhysRevA.66.042309
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to study multipartite quantum cryptography, we introduce quantities which vanish on product probability distributions, and which can only decrease if the parties carry out local operations or public classical communication. These "secrecy monotones" therefore measure how much secret correlation is shared by the parties. In the bipartite case we show that the mutual information is a secrecy monotone. In the multipartite case we describe two different generalizations of the mutual information, both of which are secrecy monotones. The existence of two distinct secrecy monotones allows us to show that in multipartite quantum cryptography the parties must make irreversible choices about which multipartite correlations they want to obtain. Secrecy monotones can be extended to the quantum domain and are then defined on density matrices. We illustrate this generalization by considering tripartite quantum cryptography based on the Greenberger-Home-Zeilinger state. We show that before carrying out measurements on the state, the parties must make an irreversible decision about what probability distribution they want to obtain.
引用
收藏
页数:13
相关论文
共 25 条
  • [1] von Neumann capacity of noisy quantum channels
    Adami, C
    Cerf, NJ
    [J]. PHYSICAL REVIEW A, 1997, 56 (05): : 3470 - 3483
  • [2] Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
  • [3] Exact and asymptotic measures of multipartite pure-state entanglement
    [J]. Bennett, Charles H., 2001, American Inst of Physics, Woodbury (63):
  • [4] Information theory of quantum entanglement and measurement
    Cerf, NJ
    Adami, C
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) : 62 - 81
  • [5] Entropic bounds on coding for noisy quantum channels
    Cerf, NJ
    [J]. PHYSICAL REVIEW A, 1998, 57 (05) : 3330 - 3347
  • [6] Negative entropy and information in quantum mechanics
    Cerf, NJ
    Adami, C
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (26) : 5194 - 5197
  • [7] Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
  • [8] Three qubits can be entangled in two inequivalent ways
    Dur, W.
    Vidal, G.
    Cirac, J.I.
    [J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06): : 062314 - 062311
  • [9] Tripartite entanglement and quantum relative entropy
    Galvao, EF
    Plenio, MB
    Virmani, S
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8809 - 8818
  • [10] Quantum cryptography
    Gisin, N
    Ribordy, GG
    Tittel, W
    Zbinden, H
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 145 - 195