Unfolded coprime bistatic MIMO radar for joint DOD and DOA estimation: from viewpoint on aperture augment for sum coarray

被引:2
作者
Li Zheng [1 ]
Wu Wei [1 ]
Gong Pan [1 ]
Zhang Xiaofei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Elect & Informat Engn, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Unfolded coprime linear array; direction of departure and direction of arrival estimation; bistatic multiple-input multiple-output radar; multiple signals classification; sum coarray; OF-ARRIVAL ESTIMATION; MAXIMUM-LIKELIHOOD; DIRECTION; ESPRIT; MUSIC; ARRAY; LOCALIZATION;
D O I
10.1080/00207217.2019.1636299
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generally, the coprime linear array (CLA) consisting of two interleaved uniform linear subarrays can enlarge the array aperture to attain the better angle estimation performance compared with the uniform linear array (ULA). In this paper, we ulteriorly study the virtual sum coarray of the unfolded coprime (UC) bistatic multiple-input multiple-output (MIMO) radar whose transmitter and receiver array are both unfolded CLA from the viewpoint on the geometry and array aperture. The UC MIMO radar can be exploited to obtain the better joint direction of departure (DOD) and direction of arrival (DOA) estimation performance due to the larger array aperture. Furthermore, we propose an all sum coarray multiple signals classification (ASCA-MUSIC) algorithm for the UC MIMO radar. ASCA-MUSIC can fully exploit all the degrees of freedom (DOFs) in the sum coarray and can obtain the better estimation performance. We also prove that ASCA-MUSIC can avoid the phase ambiguity problem due to the coprime property. In addition, we devise a reduced complexity scheme for ASCA-MUSIC to reduce the high computational complexity and utilize Cramer-Rao Bound (CRB) as a benchmark for the lower bound on the root-mean-square error (RMSE) of unbiased angle estimation. Finally, the numerical simulations verify the effectiveness and superiority of the UC MIMO radar, ASCA-MUSIC and the reduced complexity scheme.
引用
收藏
页码:1999 / 2018
页数:20
相关论文
共 30 条
[1]  
[Anonymous], 2017, SENSORS BASEL, DOI DOI 10.3390/s17112457
[2]   Target detection and localization using. MIMO radars and sonars [J].
Bekkerman, Ilya ;
Tabrikian, Joseph .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) :3873-3883
[3]   Joint DOD-DOA estimation using combined ESPRIT-MUSIC approach in MIMO radar [J].
Bencheikh, M. L. ;
Wang, Y. .
ELECTRONICS LETTERS, 2010, 46 (15) :1081-1082
[4]   PHASED-ARRAY RADARS [J].
BROOKNER, E .
SCIENTIFIC AMERICAN, 1985, 252 (02) :94-&
[5]  
Chen Hui, 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010), P1600, DOI 10.1109/APS.1999.788251
[6]  
Chen ZM, 2017, IEEE C ANTENNA MEAS, P297, DOI 10.1109/CAMA.2017.8273431
[7]   Angle estimation using ESPRIT in MIMO radar [J].
Duofang, C. ;
Baixiao, C. ;
Guodong, Q. .
ELECTRONICS LETTERS, 2008, 44 (12) :770-770
[8]   Spatial diversity in radars-models and detection performance [J].
Fishler, E ;
Haimovich, A ;
Blum, RS ;
Cimini, LJ ;
Chizhik, D ;
Valenzuela, RA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (03) :823-838
[9]   MIMO radar: An idea whose time has come [J].
Fishler, E ;
Haimovich, A ;
Blum, R ;
Chizhik, D ;
Cimini, L ;
Valenzuela, R .
PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, :71-78
[10]  
Jia Y, 2017, IEEE RAD CONF, P394, DOI 10.1109/RADAR.2017.7944234