A simple model for interconnect design of planar solid oxide fuel cells

被引:30
作者
Tanner, CW [1 ]
Virkar, AV [1 ]
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
关键词
planar; solid oxide fuel cell; geometry;
D O I
10.1016/S0378-7753(02)00479-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two geometries of solid oxide fuel cells (SOFCs) are currently under development, tubular and planar. Both types of cells are configured in a stack using an interconnect, which electrically connects the anode of one cell to the cathode of the adjacent cell, while also physically isolating fuel from oxidant. Proper design of the interconnect in conjunction with single-cells is critical to minimizing the overall stack resistance. This work quantitatively examines the dependence of total SOFC stack resistance as a function of interconnect contact spacing, interconnect contact area, cathode thickness, electrolyte thickness, anode thickness, and transport properties associated with each region and at interfaces (charge transfer resistance). Both one-dimensional (channels) and two-dimensional (dimples) symmetries of interconnect geometry are analyzed for planar cells. Analytical expressions are derived for the area-specific resistance (ASR) of a repeat unit consisting of a cell and interconnect, for both geometries, as a function of cell parameters, interconnect contact area and interconnect contact spacing. It is found that the one-dimensional interconnect symmetry leads to lower values of stack-repeat unit area-specific resistance (ASR) than the two-dimensional symmetry. Thus, based on the analysis presented here the one-dimensional interconnect geometry is preferred over the twodimensional one. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 50 条
  • [1] A simple bilayer electrolyte model for solid oxide fuel cells
    Chan, SH
    Chen, XJ
    Khor, KA
    SOLID STATE IONICS, 2003, 158 (1-2) : 29 - 43
  • [2] Optimization of interconnect flow channels width in a planar solid oxide fuel cell
    Li, Xiaolian
    Shi, Wangying
    Han, Minfang
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (46) : 21524 - 21534
  • [3] A novel interconnect design for thermal management of a commercial-scale planar solid oxide fuel cell stack
    Kim, Jiyoung
    Kim, Dong Hwan
    Lee, Wooseok
    Lee, Sanghyeok
    Hong, Jongsup
    ENERGY CONVERSION AND MANAGEMENT, 2021, 246
  • [4] Analysis of processes in planar solid oxide fuel cells
    Hu, Qiang
    Wang, Shaorong
    Wen, Ting-Lian
    SOLID STATE IONICS, 2008, 179 (27-32) : 1579 - 1587
  • [5] Residual stresses in planar solid oxide fuel cells
    Fischer, W
    Malzbender, J
    Blass, G
    Steinbrech, RW
    JOURNAL OF POWER SOURCES, 2005, 150 : 73 - 77
  • [6] Polarization analysis of planar solid oxide fuel cells
    Yoshida, T
    Koide, H
    Andoh, M
    Mukaizawa, I
    Someya, Y
    Tsunoda, A
    DENKI KAGAKU, 1996, 64 (06): : 624 - 628
  • [7] Reduced model for the planar solid oxide fuel cell
    He, Zhongjie
    Li, Hua
    Birgersson, E.
    COMPUTERS & CHEMICAL ENGINEERING, 2013, 52 : 155 - 167
  • [8] The effects of the interconnect rib contact resistance on the performance of planar solid oxide fuel cell stack and the rib design optimization
    Liu, Shixue
    Song, Ce
    Lin, Zijing
    JOURNAL OF POWER SOURCES, 2008, 183 (01) : 214 - 225
  • [9] Effect of contact area and depth between cell cathode and interconnect on stack performance for planar solid oxide fuel cells
    Jin, Le
    Guan, Wanbing
    Niu, Jinqi
    Ma, Xiao
    Wang, Wei Guo
    JOURNAL OF POWER SOURCES, 2013, 240 : 796 - 805
  • [10] Solid oxide fuel cell interconnect design optimization considering the thermal stresses
    Xu, Min
    Li, Tingshuai
    Yang, Ming
    Andersson, Martin
    SCIENCE BULLETIN, 2016, 61 (17) : 1333 - 1344