Persistence time of solutions of the three-dimensional Navier-Stokes equations in Sobolev-Gevrey classes

被引:2
|
作者
Biswas, Animikh [1 ]
Hudson, Joshua [2 ]
Tian, Jing [3 ]
机构
[1] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
[2] Sandia Natl Labs, Livermore, CA 94551 USA
[3] Towson Univ, Dept Math, Towson, MD 21252 USA
关键词
3D Navier-Stokes equations; Gevrey spaces; Persistence time; Analyticity radius; SPACE ANALYTICITY; LEVEL SETS; REGULARITY; SCALE; DECAY;
D O I
10.1016/j.jde.2020.12.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study existence times of strong solutions of the three-dimensional Navier-Stokes equations in time-varying analytic Gevrey classes based on Sobolev spaces H-s, s > 1/2. This complements the seminal work of Foias and Temam (1989) [26] on H-1 based Gevrey classes, thus enabling us to improve estimates of the analyticity radius of solutions for certain classes of initial data. The main thrust of the paper consists in showing that the existence times in the much stronger Gevrey norms (i.e. the norms defining the analytic Gevrey classes which quantify the radius of real-analyticity of solutions) match the best known persistence times in Sobolev classes. Additionally, as in the case of persistence times in the corresponding Sobolev classes, our existence times in Gevrey norms are optimal for 1/2 < s < 5/2. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:191 / 233
页数:43
相关论文
共 50 条
  • [21] A class of exact solutions to the three-dimensional incompressible Navier-Stokes equations
    Nugroho, Gunawan
    Ali, Ahmed M. S.
    Karim, Zainal A. Abdul
    APPLIED MATHEMATICS LETTERS, 2010, 23 (11) : 1388 - 1396
  • [22] Three-dimensional blow-up solutions of the Navier-Stokes equations
    Grundy, RE
    McLaughlin, R
    IMA JOURNAL OF APPLIED MATHEMATICS, 1999, 63 (03) : 287 - 306
  • [23] A note on statistical solutions of the three-dimensional Navier-Stokes equations: The time-dependent case
    Foias, Ciprian
    Rosa, Ricardo M. S.
    Temam, Roger
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (3-4) : 235 - 240
  • [25] Hopf bifurcation of the three-dimensional Navier-Stokes equations
    Chen, ZM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 237 (02) : 583 - 608
  • [26] Numerical solution of the three-dimensional Navier-Stokes equations
    Jaberg, Helmut
    Aktiengesellschaft), 1988, (24 e): : 20 - 32
  • [27] Regularity Criteria for the Three-dimensional Navier-Stokes Equations
    Cao, Chongsheng
    Titi, Edriss S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (06) : 2643 - 2661
  • [28] On the study of three-dimensional compressible Navier-Stokes equations
    Abdelwahed, Mohamed
    Bade, Rabe
    Chaker, Hedia
    Hassine, Maatoug
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [29] Nonequilibrium ensembles for the three-dimensional Navier-Stokes equations
    Margazoglou, G.
    Biferale, L.
    Cencini, M.
    Gallavotti, G.
    Lucarini, V
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [30] Decay of weak solutions and the singular set of the three-dimensional Navier-Stokes equations
    Robinson, James C.
    Sadowski, Witold
    NONLINEARITY, 2007, 20 (05) : 1185 - 1191