Large-scale road detection in forested mountainous areas using airborne topographic lidar data

被引:45
作者
Ferraz, Antonio [1 ,2 ,3 ]
Mallet, Clement [1 ]
Chehata, Nesrine [1 ,4 ]
机构
[1] Univ Paris Est, IGN, MATIS, Paris, France
[2] NASA, Jet Prop Lab, New York, NY USA
[3] INESC Coimbra, R&D Unit, Coimbra, Portugal
[4] Bordeaux INP, EA 4592, Bordeaux, France
关键词
Lidar; Airborne; Road extraction; Classification; Mountainous areas; Forests; Large scale mapping; AERIAL IMAGES; CENTERLINE EXTRACTION; AUTOMATIC EXTRACTION; NETWORK EXTRACTION; CLASSIFICATION; FEATURES;
D O I
10.1016/j.isprsjprs.2015.12.002
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In forested mountainous areas, the road location and characterization are invaluable inputs for various purposes such as forest management, wood harvesting industry, wildfire protection and fighting. Airborne topographic lidar has become an established technique to characterize the Earth surface. Lidar provides 3D point clouds allowing for fine reconstruction of ground topography while preserving high frequencies of the relief: fine Digital Terrain Models (DTMs) is the key product. This paper addresses the problem of road detection and characterization in forested environments over large scales (>1000 km(2)). For that purpose, an efficient pipeline is proposed, which assumes that main forest roads can be modeled as planar elongated features in the road direction with relief variation in orthogonal direction. DTMs are the only input and no complex 3D point cloud processing methods are involved. First, a restricted but carefully designed set of morphological features is defined as input for a supervised Random Forest classification of potential road patches. Then, a graph is built over these candidate regions: vertices are selected using stochastic geometry tools and edges are created in order to fill gaps in the DTM created by vegetation occlusion. The graph is pruned using morphological criteria derived from the input road model. Finally, once the road is located in 2D, its width and slope are retrieved using an object-based image analysis. We demonstrate that our road model is valid for most forest roads and that roads are correctly retrieved (>80%) with few erroneously detected pathways (10-15%) using fully automatic methods. The full pipeline takes less than 2 min per km(2) and higher planimetric accuracy than 2D existing topographic databases are achieved. Compared to these databases, additional roads can be detected with the ability of lidar sensors to penetrate the understory. In case of very dense vegetation and insufficient relief in the DTM, gaps may exist in the results resulting in local incompleteness (similar to 15%). 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 36
页数:14
相关论文
共 48 条
[1]   Road extraction from aerial images using a region competition algorithm [J].
Amo, M ;
Martínez, F ;
Torre, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) :1192-1201
[2]  
[Anonymous], 2014, FORESTRY APPL AIRBOR
[3]  
[Anonymous], 2001, GEN TECHNICAL REPORT
[4]  
[Anonymous], 2013, DECISION FORESTS COM
[5]  
Axelsson P., 2000, INT ARCH PHOTOGRAMM, V33, P110, DOI DOI 10.1016/J.ISPRSJPRS.2005.10.005
[6]   Forest Road Detection Using LiDAR Data [J].
Azizi, Zahra ;
Najafi, Akbar ;
Sadeghian, Saeed .
JOURNAL OF FORESTRY RESEARCH, 2014, 25 (04) :975-980
[7]  
Brédif M, 2012, INT ARCH PHOTOGRAMM, V39-B3, P259
[8]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[9]   Aspects of generating precise digital terrain models in the Wadden Sea from lidar-water classification and structure line extraction [J].
Brzank, Alexander ;
Heipke, Christian ;
Goepfert, Jens ;
Soergel, Uwe .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2008, 63 (05) :510-528
[10]   Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China [J].
Chen, Weitao ;
Li, Xianju ;
Wang, Yanxin ;
Chen, Gang ;
Liu, Shengwei .
REMOTE SENSING OF ENVIRONMENT, 2014, 152 :291-301