A hierarchical object detection method in large-scale optical remote sensing satellite imagery using saliency detection and CNN

被引:29
作者
Song, Zhina [1 ]
Sui, Haigang [2 ]
Hua, Li [3 ]
机构
[1] Coll Wuhan Univ, Remote Sensing & Informat Engn, Wuhan, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, 129 Luoyu Rd, Wuhan, Hubei, Peoples R China
[3] Huazhong Agr Univ, Coll Resources & Environm, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
AUTOMATIC SHIP DETECTION; AIRPLANE DETECTION; AIRPORT DETECTION; NETWORKS; CLASSIFICATION; EFFICIENT; FUSION;
D O I
10.1080/01431161.2020.1826059
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Detecting geospatial objects, especially small, time-sensitive targets such as airplanes and ships in cluttered scenes, is a substantial challenge in large-scale, high-resolution optical satellite images. Directly detecting targets in countless image blocks results in higher false alarms and is also inefficient. In this paper, we introduce a hierarchical architecture to quickly locate related areas and detect these targets effectively. In the coarse layer, we use an improved saliency detection model that utilizes geospatial priors and multi-level saliency features to probe suspected regions in broad and complicated remote sensing images. Then, in the fine layer of each region, an efficacious end-to-end neural network that predicts the categories and locations of the objects is adopted. To improve the detection performance, an enhanced network, adaptive multi-scale anchors, and an improved loss function are designed to overcome the great diversity and complexity of backgrounds and targets. The experimental results obtained for both a public dataset and our collected images validated the effectiveness of our proposed method. In particular, for large-scale images (more than 500 km(2)), the adopted method far surpasses most unsupervised saliency models in terms of the performance in region saliency detection and can quickly detect targets within 1 minute, with 95.0% recall and 93.2% precision rates on average.
引用
收藏
页码:2827 / 2847
页数:21
相关论文
共 59 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
Bettencourt L.M., 2009, 2009 IEEE APPL IM PA, P1
[3]  
Bi F., 2010, Adv. Neural Netw. Res. Appl., P729
[4]   Salient Object Detection: A Benchmark [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Jiang, Huaizu ;
Li, Jia .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5706-5722
[5]   A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection [J].
Cai, Zhaowei ;
Fan, Quanfu ;
Feris, Rogerio S. ;
Vasconcelos, Nuno .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :354-370
[6]   End-to-End Airplane Detection Using Transfer Learning in Remote Sensing Images [J].
Chen, Zhong ;
Zhang, Ting ;
Ouyang, Chao .
REMOTE SENSING, 2018, 10 (01)
[7]   Remote Sensing Image Scene Classification: Benchmark and State of the Art [J].
Cheng, Gong ;
Han, Junwei ;
Lu, Xiaoqiang .
PROCEEDINGS OF THE IEEE, 2017, 105 (10) :1865-1883
[8]   Multi-class geospatial object detection and geographic image classification based on collection of part detectors [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Guo, Lei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 :119-132
[9]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[10]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853