Twofold efficiency increase in nanocrystalline-TiO2/polymer photovoltaic devices by interfacial modification with a lithium salt

被引:1
作者
Barkhouse, D. Aaron R. [1 ]
Carey, Michelle J. [1 ]
Xie, Zhibin [1 ]
Kirov, Kiril R. [1 ]
Henry, Bernard M. [1 ]
Assender, Hazel E. [1 ]
Webster, Graham R. [2 ]
Burn, Paul L. [2 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
来源
ORGANIC PHOTOVOLTAICS VII | 2006年 / 6334卷
关键词
TiO2; polymer; MEH-PPV; nanocomposite; lithium; interface; solar cell; photovoltaic;
D O I
10.1117/12.679424
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Modification of the interface of titanium dioxide/poly[2-(2-ethylhexyloxy)-5-methoxy-1,4,-phenylenevinylene] (TiO2/MEH-PPV) nanocomposite photovoltaic devices with a lithium salt, Li[CF3SO2](2)N, is shown to result in a twofold increase in device efficiency. The devices are of the type ITO/TiO2/MEH-PPV/Au. The TiO2 layer is deposited by doctor blading a colloidal anatase paste, and the polymer is then spin-coated on top followed by thermal evaporation of gold contacts. Careful control of manufacturing conditions and use of a 35 nm polymer layer leads to a device efficiency of 0.48% for un-modified devices. The increased efficiency following Li treatment is the result of a 40% increase in both the short-circuit current and fill factor, while the open-circuit voltage remains unchanged. A maximum efficiency of 1.05% has been achieved under 80% sun illumination. This represents a record efficiency for this type of cell. Photoconductivity experiments show a substantial increase in conductivity of the TiO2 layer following Li modification. Interfacial modification is done via a simple soaking procedure, and the effect of varying the concentration of Li[CF3SO2](2)N is discussed. We report investigations into optimization and the mechanism of such improvement, for example by varying processing parameters of the modification procedure or the ionic species themselves.
引用
收藏
页数:10
相关论文
共 15 条
[1]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[2]  
BREEZE AJ, PHYS REV B, V6412, P2001
[3]   Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania [J].
Coakley, KM ;
McGehee, MD .
APPLIED PHYSICS LETTERS, 2003, 83 (16) :3380-3382
[4]   Interface engineering for solid-state dye-sensitized nanocrystalline solar cells: The use of ion-solvating hole-transporting polymers [J].
Haque, SA ;
Park, T ;
Xu, C ;
Koops, S ;
Schulte, N ;
Potter, RJ ;
Holmes, AB ;
Durrant, JR .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (05) :435-440
[5]   Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2 [J].
Kelly, CA ;
Farzad, F ;
Thompson, DW ;
Stipkala, JM ;
Meyer, GJ .
LANGMUIR, 1999, 15 (20) :7047-7054
[6]   Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells [J].
Kopidakis, N ;
Benkstein, KD ;
van de Lagemaat, J ;
Frank, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (41) :11307-11315
[8]   Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells:: Influence of lithium ions on the photovoltaic performance of liquid and solid-state cells [J].
Kuang, DB ;
Klein, C ;
Snaith, HJ ;
Moser, JE ;
Humphry-Baker, R ;
Comte, P ;
Zakeeruddin, SM ;
Grätzel, M .
NANO LETTERS, 2006, 6 (04) :769-773
[9]   Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole [J].
Murakoshi, K ;
Kogure, R ;
Wada, Y ;
Yanagida, S .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1998, 55 (1-2) :113-125
[10]   A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctions [J].
Park, T ;
Haque, SA ;
Potter, RJ ;
Holmes, AB ;
Durrant, JR .
CHEMICAL COMMUNICATIONS, 2003, (23) :2878-2879