A 6.5∼7.5-GHz CMOS Wideband FMCW Radar Transmitter based on Synthetic Bandwidth Technique

被引:0
作者
Su, Hanyang [1 ]
Balon, Siegfred D. [1 ]
Cheong, Ke You [1 ]
Heng, Chun-Huat [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
来源
PROCEEDINGS OF THE 2020 IEEE/MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS) | 2020年
关键词
CMOS; FMCW; PLL; injection-locked oscillator; synthetic bandwidth; TRANSCEIVER;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fully integrated wideband FMCW radar transmitter based on synthetic bandwidth technique has been proposed and implemented in 55-nm CMOS technology. The wideband chirp is synthesized by mixing 500-MHz chirp from low frequency phase locked loop (PLL) with multiple high frequency carriers generated from sub-harmonic injection locking oscillator (SHILO). The fast switching SHILO allows the combination of multiple 500-MHz chirps to form a wideband chirp at high frequency. In the design, a wideband fractional-N PLL with randomized phase interpolation, covering 1.8 similar to 2.3 GHz, is employed to generate the desired 500-MHz chirp while achieving low in-band phase noise of -115 similar to 120 dBc/Hz. The high frequency SHILO also attains similar low in-band phase noise thanks to the injection locking property while achieving fast switching time less than 14 ns. The proposed transmitter achieves final chirp bandwidth of 1 GHz with good phase noise performance. The technique can be easily extended for wider chirp bandwidth by increasing the number of output carriers from SHILO. The transmitter supports pulse repetition period ranging from 0.3 to 6.3 ms. It consumes 84 mW, while occupying a total active area of 2.24 mm(2).
引用
收藏
页码:213 / 216
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 2014, P INT RAD C
[2]  
Balon S, 2018, IEEE T MICROW THEORY, V66, P5095, DOI 10.1109/TMTT.2018.2870821
[3]   An Injection-Locked-Based FMCW Transmitter With Synthetic Bandwidth Technique [J].
Balon, Siegfred ;
Mouthaan, Koenraad ;
Heng, Chun-Huat ;
Chen, Zhi Ning .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (01) :55-57
[4]  
Ding BW, 2018, IEEE MTT S INT MICR, P887, DOI 10.1109/MWSYM.2018.8439346
[5]   A Pulse Shaping Technique for Spur Suppression in Injection-Locked Synthesizers [J].
Izad, Mehran M. ;
Heng, Chun-Huat .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (03) :652-664
[6]  
Kim Y, 2017, IEEE MTT S INT MICR, P64, DOI [10.1109/MWSYM.2017.8058659, 10.1145/3110025.3110041]
[7]   A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology [J].
Lee, Jri ;
Li, Yi-An ;
Hung, Meng-Hsiung ;
Huang, Shih-Jou .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (12) :2746-2756
[8]   A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications [J].
Mitomo, Toshiya ;
Ono, Naoko ;
Hoshino, Hiroaki ;
Yoshihara, Yoshiaki ;
Watanabe, Osamu ;
Seto, Ichiro .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2010, 45 (04) :928-937
[9]  
Wada O, 2017, IEEE MTT S INT MICR, P1414
[10]   A 260-mW Ku-Band FMCW Transceiver for Synthetic Aperture Radar Sensor With 1.48-GHz Bandwidth in 65-nm CMOS Technology [J].
Wang, Yong ;
Lou, Liheng ;
Chen, Bo ;
Zhang, Ying ;
Tang, Kai ;
Qiu, Lei ;
Liu, Supeng ;
Zheng, Yuanjin .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2017, 65 (11) :4385-4399