Entropy numbers of embeddings of weighted Besov spaces III.: Weights of logarithmic type

被引:28
|
作者
Kuehn, Thomas
Leopold, Hans-Gerd
Sickel, Winfried
Skrzypczak, Leszek
机构
[1] Univ Leipzig, Inst Math, D-04109 Leipzig, Germany
[2] Univ Jena, Inst Math, D-07743 Jena, Germany
[3] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
关键词
weighted Besov spaces; smooth weights with logarithmic bounds; continuous and compact embeddings; entropy numbers;
D O I
10.1007/s00209-006-0010-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the exact asymptotic order of the entropy numbers of compact embeddings B-p1,q1(s1) (R-d, w(1)) hooked right arrow B-p2,q2(s2) (R-d, w(2)) of weighted Besov spaces in the case where the ratio of the weights w(x) = Wl(X)IW2(X) is Of logarithmic type. This complements the known results for weights of polynomial type. The estimates are given in terms of the number 1/p = 1/p(1) - 1/p(2) and the function w(x). We find an interesting new effect: if the growth rate at infinity of w(x) is below a certain critical bound, then the entropy numbers depend only on w(x) and no longer on the parameters of the two Besov spaces. All results remain valid for Triebel-Lizorkin spaces as well.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 30 条