Alternative Hamiltonian descriptions and statistical mechanics

被引:5
作者
Ercolessi, E
Morandi, G
Marmo, G
机构
[1] Univ Bologna, Dipartmento Fis, INFM, I-40127 Bologna, Italy
[2] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, I-80126 Naples, Italy
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2002年 / 17卷 / 26期
关键词
alternative Hamiltonians; statistical mechanics;
D O I
10.1142/S0217751X02009898
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We argue here that, just as it happens in classical and quantum mechanics, where it has been proven that alternative Hamiltonian descriptions can be compatible with a given set of equations of motion, the same holds true in the realm of statistical mechanics, i.e. that alternative Hamiltonian descriptions do lead to the same thermodynamical description of any physical system.
引用
收藏
页码:3779 / 3788
页数:10
相关论文
共 15 条
  • [1] [Anonymous], DYNAMICAL SYSTEMS
  • [2] Arnold VI, 2013, Mathematical methods of classical mechanics
  • [3] CARINENA JF, 1995, PHYS REP, V263, P154
  • [4] DODONOV VV, 1981, HADRONIC J, V4, P1734
  • [5] ALTERNATIVE HAMILTONIAN DESCRIPTION FOR QUANTUM-SYSTEMS
    DUBROVIN, BA
    MARMO, G
    SIMONI, A
    [J]. MODERN PHYSICS LETTERS A, 1990, 5 (15) : 1229 - 1234
  • [6] Wigner's problem and alternative commutation relations for quantum mechanics
    Manko, VI
    Marmo, G
    Zaccaria, F
    Sudarshan, ECG
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (10): : 1281 - 1296
  • [7] Symplectic structures and quantum mechanics
    Marmo, G
    Vilasi, G
    [J]. MODERN PHYSICS LETTERS B, 1996, 10 (12): : 545 - 553
  • [8] Bihamiltonian quantum systems and Weyl quantization
    Marmo, G
    Simoni, A
    Ventriglia, F
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 149 - 157
  • [9] MARMO G, 1989, SYMMETRIES SCI, V3, P243
  • [10] THE INVERSE PROBLEM IN THE CALCULUS OF VARIATIONS AND THE GEOMETRY OF THE TANGENT BUNDLE
    MORANDI, G
    FERRARIO, C
    LOVECCHIO, G
    MARMO, G
    RUBANO, C
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 188 (3-4): : 147 - 284