Exploring the exceptional performance of a deep learning stream temperature model and the value of streamflow data

被引:82
|
作者
Rahmani, Farshid [1 ]
Lawson, Kathryn [1 ]
Ouyang, Wenyu [2 ]
Appling, Alison [3 ]
Oliver, Samantha [4 ]
Shen, Chaopeng [1 ]
机构
[1] Penn State Univ, Civil & Environm Engn, State Coll, PA USA
[2] Dalian Univ Technol, Sch Hydraul Engn, Dalian, Peoples R China
[3] US Geol Survey, Reston, VA 20192 USA
[4] US Geol Survey, Upper Midwest Water Sci Ctr, Middleton, WI USA
基金
美国国家科学基金会;
关键词
stream temperature; machine learning; streamflow; deep learning; LSTM; WATER TEMPERATURE; RIPARIAN VEGETATION; CLIMATE-CHANGE; EQUIFINALITY; PARAMETERS;
D O I
10.1088/1748-9326/abd501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Stream water temperature (T-s) is a variable of critical importance for aquatic ecosystem health. T-s is strongly affected by groundwater-surface water interactions which can be learned from streamflow records, but previously such information was challenging to effectively absorb with process-based models due to parameter equifinality. Based on the long short-term memory (LSTM) deep learning architecture, we developed a basin-centric lumped daily mean T-s model, which was trained over 118 data-rich basins with no major dams in the conterminous United States, and showed strong results. At a national scale, we obtained a median root-mean-square error of 0.69 degrees C, Nash-Sutcliffe model efficiency coefficient of 0.985, and correlation of 0.994, which are marked improvements over previous values reported in literature. The addition of streamflow observations as a model input strongly elevated the performance of this model. In the absence of measured streamflow, we showed that a two-stage model could be used, where simulated streamflow from a pre-trained LSTM model (Q(sim)) still benefited the T-s model even though no new information was brought directly into the inputs of the T-s model. The model indirectly used information learned from streamflow observations provided during the training of Q(sim), potentially to improve internal representation of physically meaningful variables. Our results indicate that strong relationships exist between basin-averaged forcing variables, catchment attributes, and T-s that can be simulated by a single model trained by data on the continental scale.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Deep learning model for displacement monitoring of super high arch dams based on measured temperature data
    Lu, Taiqi
    Gu, Chongshi
    Yuan, Dongyang
    Zhang, Kang
    Shao, Chenfei
    MEASUREMENT, 2023, 222
  • [32] Machine Learning and Deep Learning for Loan Prediction in Banking: Exploring Ensemble Methods and Data Balancing
    Sayed, Eslam Hussein
    Alabrah, Amerah
    Rahouma, Kamel Hussein
    Zohaib, Muhammad
    Badry, Rasha M.
    IEEE ACCESS, 2024, 12 : 193997 - 194019
  • [33] Mitigating Prediction Error of Deep Learning Streamflow Models in Large Data-Sparse Regions With Ensemble Modeling and Soft Data
    Feng, Dapeng
    Lawson, Kathryn
    Shen, Chaopeng
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (14)
  • [34] A deep learning synthetic likelihood approximation of a non-stationary spatial model for extreme streamflow forecasting
    Majumder, Reetam
    Reich, Brian J.
    SPATIAL STATISTICS, 2023, 55
  • [35] Deep Learning Data-Intelligence Model Based on Adjusted Forecasting Window Scale: Application in Daily Streamflow Simulation
    Fu, Minglei
    Fan, Tingchao
    Ding, Zi'ang
    Salih, Sinan Q.
    Al-Ansari, Nadhir
    Yaseen, Zaher Mundher
    IEEE ACCESS, 2020, 8 : 32632 - 32651
  • [36] A framework of integrating heterogeneous data sources for monthly streamflow prediction using a state-of-the-art deep learning model
    Xu, Wenxin
    Chen, Jie
    Zhang, Xunchang J.
    Xiong, Lihua
    Chen, Hua
    JOURNAL OF HYDROLOGY, 2022, 614
  • [37] Deep PLS: A Lightweight Deep Learning Model for Interpretable and Efficient Data Analytics
    Kong, Xiangyin
    Ge, Zhiqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8923 - 8937
  • [38] Multiple stream deep learning model for human action recognition
    Gu, Ye
    Ye, Xiaofeng
    Sheng, Weihua
    Ou, Yongsheng
    Li, Yongqiang
    IMAGE AND VISION COMPUTING, 2020, 93
  • [39] Comparison of the performance of a hydrologic model and a deep learning technique for rainfall- runoff analysis
    Kim, Chorong
    Kim, Chung-Soo
    TROPICAL CYCLONE RESEARCH AND REVIEW, 2021, 10 (04) : 215 - 222
  • [40] Dynamic Model Tree for Interpretable Data Stream Learning
    Haug, Johannes
    Broelemann, Klaus
    Kasneci, Gjergji
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 2562 - 2574