Circular chromatic number of distance graphs with distance sets of cardinality 3

被引:23
作者
Zhu, XD [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
关键词
distance graph; chromatic number; circular chromatic number; fractional chromatic number; Diophantine approximation; T-colouring;
D O I
10.1002/jgt.10062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose D is a subset of R+. The distance graph G(R, D) is the graph with vertex set R in which two vertices x,y are adjacent if \x - y\ is an element of D. This study investigates the circular chromatic number and the fractional chromatic number of distance graphs G(R,D) with \D\ = 3. As a consequence, we determine the chromatic numbers of all such distance graphs. This settles a conjecture proposed independently by Chen et al. [J. Chen, G. Chang, and K. Huang, J Graph Theory 25 (1997) 281-287 and Voigt [M. Voigt Ars Combinatoria, 52 (1999) 3-12] in the affirmative. (C) 2002 Wiley Periodicals, Inc.
引用
收藏
页码:195 / 207
页数:13
相关论文
共 23 条
[1]  
[Anonymous], 1982, C NUMER
[2]   Flows, view obstructions, and the lonely runner [J].
Bienia, W ;
Goddyn, L ;
Gvozdjak, P ;
Sebo, A ;
Tarsi, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 72 (01) :1-9
[3]  
Chang G., 1999, J COMB THEORY B, V75, P159
[4]   Circular chromatic numbers and fractional chromatic numbers of distance graphs [J].
Chang, GJ ;
Huang, LL ;
Zhu, XD .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (04) :423-431
[5]  
CHEN J, 1997, J GRAPH THEOR, V25, P281
[6]   The view-obstruction problem for n-dimensional cubes [J].
Chen, YG ;
Cusick, TW .
JOURNAL OF NUMBER THEORY, 1999, 74 (01) :126-133
[7]   ON A CONJECTURE IN DIOPHANTINE APPROXIMATIONS .2. [J].
CHEN, YG .
JOURNAL OF NUMBER THEORY, 1991, 37 (02) :181-198
[8]   ON A CONJECTURE IN DIOPHANTINE APPROXIMATIONS .4. [J].
CHEN, YG .
JOURNAL OF NUMBER THEORY, 1993, 43 (02) :186-197
[9]  
Cusick T. W., 1974, Journal of Combinatorial Theory, Series A, V16, P1, DOI 10.1016/0097-3165(74)90066-1
[10]   The chromatic numbers of distance graphs [J].
Deuber, WA ;
Zhu, XD .
DISCRETE MATHEMATICS, 1997, 165 :195-204