The integrable discrete analogues of orthogonal coordinate systems are multi-dimensional circular lattices

被引:57
作者
Cieslinski, J
Doliwa, A
Santini, PM
机构
[1] IST NAZL FIS NUCL, SEZIONE ROMA, I-00185 ROME, ITALY
[2] UNIV WARSAW, INST FIZ TEORET, PL-00681 WARSAW, POLAND
[3] UNIV CATANIA, DIPARTIMENTO FIS, I-95129 CATANIA, ITALY
关键词
integrable systems; discrete geometry; difference equations;
D O I
10.1016/S0375-9601(97)00657-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the integrable discrete analogues of the Lame orthogonal systems of coordinates are given by multidimensional circular lattices, i.e. by multidimensional lattices whose elementary quadrilaterals are inscribed in circles. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:480 / 488
页数:9
相关论文
共 22 条
[1]  
BERGER M, 1987, Geometry I
[2]  
BIANCHI L, 1924, LEZIONI GEOMETRIA DI
[3]  
Bobenko A, 1996, J REINE ANGEW MATH, V475, P187
[4]  
Bobenko A, 1996, J DIFFER GEOM, V43, P527
[5]  
BOBENKO A, IN PRESS SYMMETRIES, V2
[6]   LATTICE AND Q-DIFFERENCE DARBOUX-ZAKHAROV-MANAKOV SYSTEMS VIA PARTIAL-DERIVATIVE-DRESSING METHOD [J].
BOGDANOV, LV ;
KONOPELCHENKO, BG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (05) :L173-L178
[7]  
CIESLINSKI J, IN PRESS SYMMETRIES, V2
[8]  
COOLIDGE JL, 1916, TREATISE CIRCLE SPHE
[9]  
DARBOUX G, 1887, LEONS THEORIE GEN SU, V1
[10]  
DARBOUX G, 1910, LECONS SYSTEMS ORTHO