Investigation of electron beam parameters in laser wakefield acceleration using skewed laser pulse and external magnetic field

被引:12
|
作者
Gopal, K. [1 ,4 ]
Gupta, D. N. [1 ]
Jain, A. [1 ]
Hur, M. S. [2 ]
Suk, H. [3 ]
机构
[1] Univ Delhi, Dept Phys & Astrophys, Delhi 110007, India
[2] Ulsan Natl Inst Sci & Technol, Sch Nat Sci, Ulsan 44919, South Korea
[3] Gwangju Inst Sci & Technol, Dept Phys & Photon Sci, Gwangju 61005, South Korea
[4] Univ Delhi, Rajdhani Coll, Dept Phys & Elect, Delhi 110015, India
基金
新加坡国家研究基金会;
关键词
Electron beam generation; Laser wakefield acceleration; Plasma simulation;
D O I
10.1016/j.cap.2021.03.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the parameters of accelerated electron bunch in laser wakefield acceleration (LWFA), when a skewed laser pulse propagates through a plasma in the presence of a transverse magnetic field. Two dimensional particle-in-cell (2D-PIC) simulations have been performed under the consideration of pulse skewness parameter (s? = ?l/?t) that is defined as the ratio of leading (?l) to trailing pulse edge (?t) duration. The injected charge is estimated as 23 pC for the laser strength parameter a0 = 2 when s? changes from 1 to 0.45 at a laser propagation distance of 1.5 mm with 50T magnetic field. The electron beam emittance reduces about 50% when leading edge of the pulse becomes two-fold sharper (s? = 0.45) with 50T magnetic field. Energy spread of accelerated electron bunch is also reduced from 18 to 6.6%. Hence, in the presence of a transverse magnetic field, the laser pulse skewness can significantly improve the quality of the accelerated electron bunch (i.e. charge, mean energy and emittance) in laser wakefield acceleration.
引用
收藏
页码:82 / 89
页数:8
相关论文
共 50 条
  • [1] DIELECTRICWAVEGUIDES FOR ELECTRON ACCELERATION BY LASER PULSE WAKEFIELD
    Balakirev, V. A.
    Onishchenko, I. N.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2018, (04): : 83 - 85
  • [2] Design and simulation of laser wakefield acceleration with external electron bunch injection in front of the laser pulse
    Irman, A.
    Luttikhof, M. J. H.
    Khachatryan, A. G.
    van Goor, F. A.
    Verschuur, J. W. J.
    Bastiaens, H. M. J.
    Boller, K.-J.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (02)
  • [3] Pulse-length Effect on Laser Wakefield Acceleration of Electrons by Skewed Laser Pulses
    Gopal, Krishna
    Gupta, Devki Nandan
    Suk, Hyyong
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (03) : 1152 - 1158
  • [4] Improvement of electron beam quality in laser wakefield acceleration by a circularly-polarized laser pulse
    Jain, A.
    Gupta, D. N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (07)
  • [5] Optimization of electron bunch quality using a chirped laser pulse in laser wakefield acceleration
    Jain, Arohi
    Gupta, Devki Nandan
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (11)
  • [6] Electron bunch charge enhancement in laser wakefield acceleration using a flattened Gaussian laser pulse
    Gupta, Devki Nandan
    Yadav, Monika
    Jain, Arohi
    Kumar, Saurabh
    PHYSICS LETTERS A, 2021, 414
  • [7] Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration
    Sharma, Vivek
    Kumar, Sandeep
    Kant, Niti
    Thakur, Vishal
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (03): : 199 - 205
  • [8] Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration
    Upadhyay, Ajay K.
    Samant, Sushil A.
    Krishnagopal, S.
    PHYSICS OF PLASMAS, 2013, 20 (01)
  • [9] Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration
    Hur, Min Sup
    Gupta, Devki Nandan
    Suk, Hyyong
    PHYSICS LETTERS A, 2008, 372 (15) : 2684 - 2687
  • [10] Laser Seeded Electron Beam Filamentation in High Intensity Laser Wakefield Acceleration
    Vargas, M.
    Schumaker, W.
    Cummings, P.
    Chvykov, V.
    Yanovsky, V.
    Maksimchuk, A.
    Krushelnick, K.
    Thomas, A. G. R.
    ADVANCED ACCELERATOR CONCEPTS, 2012, 1507 : 336 - 340