THE EXACT DISTRIBUTION OF THE CONDITION NUMBER OF A GAUSSIAN MATRIX

被引:8
作者
Anderson, William [1 ]
Wells, Martin T. [2 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
关键词
condition number; eigenvalues; random matrices; singular values; Wishart distribution;
D O I
10.1137/070698932
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose G(pxn) is a real random matrix whose elements are independent and identically distributed standard normal random variables. Let W-pxp = G(pxn)G(nxp)(T), which is the usual Wishart matrix. In addition, let lambda(1) > lambda(2) > ... > lambda(p) > 0 and sigma(1) > sigma(2) > ... > sigma(p) > 0 denote the distinct eigenvalues of the matrix Wpxp and singular values of G(pxn), respectively. The 2-norm condition number of G(pxn) is kappa(2)(G(pxn)) = root lambda(1)/lambda(p) = sigma(1)/sigma(p), the square root of the ratio of largest to smallest eigenvalues of the Wishart matrix. In this article we derive an exact expression, albeit somewhat complex, for the probability density function of kappa(2)(G(pxn)).
引用
收藏
页码:1125 / 1130
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 2002, Accuracy and stability of numerical algorithms
[2]   Multiperiod consumption and portfolio decisions under the multivariate GARCH model with transaction costs and CVaR-based risk control [J].
Chen, ZP .
OR SPECTRUM, 2005, 27 (04) :603-632
[3]  
DEMMEL JW, 1988, MATH COMPUT, V50, P449, DOI 10.1090/S0025-5718-1988-0929546-7
[4]   EIGENVALUES AND CONDITION NUMBERS OF RANDOM MATRICES [J].
EDELMAN, A .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1988, 9 (04) :543-560
[5]  
Edelman A, 2005, ACT NUMERIC, V14, P233, DOI 10.1017/S0962492904000236
[6]   Tails of condition number distributions [J].
Edelman, A ;
Sutton, BD .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) :547-560
[7]   THE DISTRIBUTION OF THE LATENT ROOTS OF THE COVARIANCE-MATRIX [J].
JAMES, AT .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01) :151-158
[8]   The efficient evaluation of the hypergeometric function of a matrix argument [J].
Koev, P ;
Edelman, A .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :833-846
[9]  
Mathai, 1997, JACOBIANS MATRIX TRA
[10]  
Muirhead R J., 1982, Aspects of Multivariate Statistical Theory