Comparative studies between the Bayesian estimation and the maximum likelihood estimation of the parameter of the uniform distribution

被引:3
|
作者
Xu, Bao [1 ]
Wang, Di [1 ]
Qi, He [1 ]
机构
[1] Jilin Normal Univ, Inst Math, Siping 136000, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
uniform distribution; geometric probability model; probability distribution function; probability density function; Bayesian estimation; conjugate prior distribution; posterior density function; loss function; posterior risk function; maximum likelihood estimation; simulation investigation; MSE; mean square error;
D O I
10.1504/IJMIC.2020.114187
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The point estimation of the parameter theta of the uniform distribution U(0, theta) is discussed. The general form of the Bayesian estimation of theta is investigated under the weighted square loss function in the framework of Bayesian statistics, and the precise form of the Bayesian estimation of theta is obtained based on the given Pareto conjugate prior distribution. The comparisons between the Bayesian estimation that obtained in the framework of Bayesian statistics and the maximum likelihood estimation that obtained in the framework of classical statistics are studied from theory and simulation respectively. Results show that the Bayesian estimation of theta under the weighted square loss function is smaller than the maximum likelihood estimation of theta in the framework of classical statistic in numerical value, and the Bayesian estimation that obtained is the maximum likelihood estimations of the corresponding functions of theta, respectively.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [41] Bayesian estimation of the two-parameter gamma distribution
    Son, YS
    Oh, M
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2006, 35 (02) : 285 - 293
  • [42] Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution
    Zaka, Azam
    Akhter, Ahmad Saeed
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2014, 10 (02) : 217 - 228
  • [43] Maximum likelihood parameter estimation of a laser system using return photons
    Borah, Deva K.
    Voelz, David G.
    Lukesh, Gordon
    Chandler, Susan
    THIRTEENTH JOINT INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS/ATMOSPHERIC PHYSICS, 2006, 6522
  • [44] Improving maximum likelihood estimation using prior probabilities: A tutorial on maximum a posteriori estimation and an examination of the weibull distribution
    Cousineau, Denis
    Helie, Sebastien
    TUTORIALS IN QUANTITATIVE METHODS FOR PSYCHOLOGY, 2013, 9 (02): : 61 - 71
  • [45] Boosting in Univariate Nonparametric Maximum Likelihood Estimation
    Li, YunPeng
    Ye, ZhaoHui
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 623 - 627
  • [46] Maximum Likelihood Estimation of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    Mathematical Geology, 1998, 30 : 95 - 108
  • [47] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [48] Random noise suppression and parameter estimation for Magnetic Resonance Sounding signal based on maximum likelihood estimation
    Li, Fan
    Li, Kai-tian
    Lu, Kai
    Li, Zhen-yu
    JOURNAL OF APPLIED GEOPHYSICS, 2020, 176
  • [49] Maximum likelihood estimation of the parameters of student's t Birnbaum-Saunders distribution: a comparative study
    Balakrishnan, Narayanaswamy
    Alam, Farouq Mohammad A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) : 793 - 822
  • [50] A Bridge between Invariant Theory and Maximum Likelihood Estimation\ast
    Amendola, Carlos
    Kohn, Kathlen
    Reichenbach, Philipp
    Seigal, Anna
    SIAM REVIEW, 2024, 66 (04) : 721 - 747