Comparative studies between the Bayesian estimation and the maximum likelihood estimation of the parameter of the uniform distribution

被引:3
|
作者
Xu, Bao [1 ]
Wang, Di [1 ]
Qi, He [1 ]
机构
[1] Jilin Normal Univ, Inst Math, Siping 136000, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
uniform distribution; geometric probability model; probability distribution function; probability density function; Bayesian estimation; conjugate prior distribution; posterior density function; loss function; posterior risk function; maximum likelihood estimation; simulation investigation; MSE; mean square error;
D O I
10.1504/IJMIC.2020.114187
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The point estimation of the parameter theta of the uniform distribution U(0, theta) is discussed. The general form of the Bayesian estimation of theta is investigated under the weighted square loss function in the framework of Bayesian statistics, and the precise form of the Bayesian estimation of theta is obtained based on the given Pareto conjugate prior distribution. The comparisons between the Bayesian estimation that obtained in the framework of Bayesian statistics and the maximum likelihood estimation that obtained in the framework of classical statistics are studied from theory and simulation respectively. Results show that the Bayesian estimation of theta under the weighted square loss function is smaller than the maximum likelihood estimation of theta in the framework of classical statistic in numerical value, and the Bayesian estimation that obtained is the maximum likelihood estimations of the corresponding functions of theta, respectively.
引用
收藏
页码:211 / 216
页数:6
相关论文
共 50 条
  • [31] MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION IN A SOFTWARE RELIABILITY MODEL WITH EXPONENTIAL FAULT CORRECTION TIME
    Harishchandra, K.
    Manjunatha, K. M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2010, 18 (02) : 175 - 188
  • [33] Maximum likelihood parameter estimation of dynamic systems by heuristic swarm search
    Lu, Yongzhong
    Yan, Danping
    Zhou, Min
    Levy, David
    INTELLIGENT DATA ANALYSIS, 2017, 21 (01) : 97 - 116
  • [34] Numerical Issues in Maximum Likelihood Parameter Estimation for Gaussian Process Interpolation
    Basak, Subhasish
    Petit, Sebastien
    Bect, Julien
    Vazquez, Emmanuel
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 116 - 131
  • [35] Maximum smoothed likelihood estimation
    Ionides, EL
    STATISTICA SINICA, 2005, 15 (04) : 1003 - 1014
  • [36] Maximum Kernel Likelihood Estimation
    Jaki, Thomas
    West, R. Webster
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2008, 17 (04) : 976 - 993
  • [37] Perturbative method for maximum likelihood estimation of the Weibull distribution parameters
    Coria, V. H.
    Maximov, S.
    Rivas-Davalos, F.
    Melchor-Hernandez, C. L.
    SPRINGERPLUS, 2016, 5
  • [38] APPROXIMATE MAXIMUM-LIKELIHOOD-ESTIMATION FOR A GENERALIZED LOGISTIC DISTRIBUTION
    BALAKRISHNAN, N
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 26 (02) : 221 - 236
  • [39] Bias-corrected maximum likelihood estimation for the beta distribution
    Cordeiro, GM
    DaRocha, EC
    DaRocha, JGC
    CribariNeto, F
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (01) : 21 - 35
  • [40] The parameter bayesian estimation of two-parameter exponentialpoisson distribution and its optimal property
    Xu, Biao
    Guo, Yan
    Zhu, Ning
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2016, 19 (04) : 697 - 707