Observing the Effects of Temperature and Surface Roughness on Cetyltrimethylammonium Bromide Adsorption Using a Quartz-Crystal Microbalance with Dissipation Monitoring

被引:4
|
作者
Hamon, Joshua J. [1 ,2 ]
Striolo, Alberto [3 ]
Grady, Brian P. [1 ,2 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn, 100 East Boyd St, Norman, OK 73019 USA
[2] Univ Oklahoma, Inst Appl Surfactant Res, 100 East Boyd St, Norman, OK 73019 USA
[3] UCL, Dept Chem Engn, London WC1E 7JE, England
基金
美国国家科学基金会;
关键词
Adsorption isotherm; Cationic surfactants; Surface activity; Adsorption kinetics; CRITICAL MICELLE CONCENTRATION; NONIONIC SURFACTANTS; QCM-D; SOLID-SURFACES; BEHAVIOR; CTAB; COADSORPTION; ISOTHERMS; MIXTURES; KINETICS;
D O I
10.1002/jsde.12294
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The effects of temperature and surface roughness on the mass and viscoelasticity of an adsorbed surfactant layer were monitored using a quartz crystal microbalance with dissipation monitoring (QCM-D). Adsorption isotherms at 30, 40, 50, and 60 degrees C and at two different roughnesses on gold were measured for cetyltrimethylammonium bromide (CTAB). All isotherms displayed an increase in mass and dissipation as surfactant concentration was increased to its critical micelle concentration (CMC). Above the CMC, adsorption reached a peak followed by a slight decrease to a plateau at the equilibrium adsorption value. As the temperature was increased, the adsorbed mass above the CMC decreased. The adsorbed mass decreased further by increasing substrate roughness, while the dissipation remained unchanged within experimental uncertainty. Dynamic adsorption experiments were also conducted at various temperatures for select concentrations above and below the CMC, providing evidence for the importance of different adsorption mechanisms as a function of both surfactant concentration and surface roughness.
引用
收藏
页码:1201 / 1212
页数:12
相关论文
共 50 条
  • [21] Immunodetection of inactivated Francisella tularensis bacteria by using a quartz crystal microbalance with dissipation monitoring
    Kleo, K.
    Schaefer, D.
    Klar, S.
    Jacob, D.
    Grunow, R.
    Lisdat, F.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2012, 404 (03) : 843 - 851
  • [22] Optimizing Bacteriophage Surface Densities for Bacterial Capture and Sensing in Quartz Crystal Microbalance with Dissipation Monitoring
    Olsson, Adam L. J.
    Wargenau, Andreas
    Tufenkji, Nathalie
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) : 13698 - 13706
  • [23] Insights into the synergistic adsorption mechanism of mixed SDS/DDA collectors on biotite using quartz crystal microbalance with dissipation
    Xu, Rui
    Liu, Jie
    Sun, Wei
    Wang, Li
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 310
  • [24] Investigation of fibrinogen adsorption on solid surface by quartz crystal microbalance with dissipation(QCM-D) and ELISA
    Li Guicai
    Shi Xiaoli
    Yang Ping
    Zhao Ansha
    Huang Nan
    SOLID STATE IONICS, 2008, 179 (21-26) : 932 - 935
  • [25] The importance of temperature and viscosity effects for surfactant adsorption measurements made using the electrochemical quartz crystal microbalance
    Ryu, DY
    Free, ML
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2003, 264 (02) : 402 - 406
  • [26] Assessment of the Effects of Surface Potential on the Kinetics of HEK293T Cell Adhesion Behavior Using a Quartz Crystal Microbalance with Dissipation Monitoring
    Kao, Wei-Lun
    Chang, Hsun-Yun
    Lin, Kang-Yi
    Lee, Yi-Wei
    Shyue, Jing-Jong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (01) : 694 - 704
  • [27] Viscoelastic Characterization of High Concentration Antibody Formulations Using Quartz Crystal Microbalance with Dissipation Monitoring
    Patel, Ankit R.
    Kerwin, Bruce A.
    Kanapuram, Sekhar R.
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2009, 98 (09) : 3108 - 3116
  • [28] Phase transitions in adsorbed lipid vesicles measured using a quartz crystal microbalance with dissipation monitoring
    Ohlsson, Gabriel
    Tigerstrom, Anna
    Hook, Fredrik
    Kasemo, Bengt
    SOFT MATTER, 2011, 7 (22) : 10749 - 10755
  • [29] Quantitative Assessment of the Enzymatic Degradation of Amorphous Cellulose by Using a Quartz Crystal Microbalance with Dissipation Monitoring
    Suchy, Miro
    Linder, Markus B.
    Tammelin, Tekla
    Campbell, J. M.
    Vuorinen, Tapani
    Kontturi, Eero
    LANGMUIR, 2011, 27 (14) : 8819 - 8828
  • [30] In situ adsorption study of carboxymethylcellulose and sodium oleate on quartz using a quartz crystal microbalance with dissipation (QCM-D)
    Yin, Manyi
    Hao, Hongying
    Wei, Hong
    Li, Mengyao
    Shao, Ziqiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 685