High-Throughput Deep Learning Microscopy Using Multi-Angle Super-Resolution

被引:1
|
作者
Zhang, Jizhou [1 ,2 ]
Xu, Tingfa [1 ,2 ]
Li, Xiangmin [1 ,2 ]
Zhang, Yizhou [1 ,2 ]
Chen, Yiwen [1 ,2 ]
Wang, Xin [1 ,2 ]
Wang, Shushan [1 ,2 ]
Wang, Chen [3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401120, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215000, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
High-throughput; deep learning; super-resolution; photo-realistic; WIDE-FIELD; PHASE RETRIEVAL; FOURIER; RECONSTRUCTION; IMAGE;
D O I
10.1109/JPHOT.2020.2977888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical applications such as pathology and hematology expect microscopes with high space-bandwidth product (SBP) which is difficult to achieve with conventional microscope setup. By applying a deep neural network, we demonstrate a high spacebandwidth product microscopic technique termed multi-angle super-resolution microscopy (MASRM) to achieve high-resolution imaging with the low-magnification objective. We design a multiple-branch deep residual network which extracts high-frequency information and color information in obliquely-illuminated low-resolution input images and generates high-resolution output. To train our network, we build a well-registered dataset in which both low-resolution input and high-resolution target are real captured images. We carry out detailed experiments to demonstrate the effectiveness of MASRM and compare it with a computational imaging technique termed Fourier ptychographic microscopy (FPM). This data-driven technique unleashes the potential of traditional microscopes with low cost and has broad prospects in biomedical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] SUPER-RESOLUTION RECONSTRUCTION OF TRANSMISSION ELECTRON MICROSCOPY IMAGES USING DEEP LEARNING
    Suveer, Amit
    Gupta, Anindya
    Kylberg, Gustaf
    Sintorn, Ida-Maria
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 548 - 551
  • [22] Deep learning massively accelerates super-resolution localization microscopy
    Wei Ouyang
    Andrey Aristov
    Mickaël Lelek
    Xian Hao
    Christophe Zimmer
    Nature Biotechnology, 2018, 36 : 460 - 468
  • [23] Deep learning massively accelerates super-resolution localization microscopy
    Ouyang, Wei
    Aristov, Andrey
    Lelek, Mickael
    Hao, Xian
    Zimmer, Christophe
    NATURE BIOTECHNOLOGY, 2018, 36 (05) : 460 - +
  • [24] Progress on Applications of Deep Learning in Super-Resolution Microscopy Imaging
    Lu Qingshuang
    Jin Luhong
    Xu Yingke
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (24)
  • [25] Super-Resolution Ultrasound Localization Microscopy Through Deep Learning
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Wijkstra, Hessel
    Eldar, Yonina C.
    Mischi, Massimo
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (03) : 829 - 839
  • [26] Deep learning empowers photothermal microscopy with super-resolution capabilities
    Wang, Yonghui
    Yue, Zhuoyan
    Wang, Fei
    Song, Peng
    Liu, Junyan
    OPTICS LETTERS, 2024, 49 (08) : 1957 - 1960
  • [27] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network
    Song, Xibin
    Dai, Yuchao
    Qin, Xueying
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 360 - 376
  • [28] High throughput Automated Multi Target Super-resolution Imaging
    Farzam, Farzin
    Liu, Sheng
    Cleyrat, Cedric
    Lidke, Keith A.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 187A - 187A
  • [29] High-Throughput Estimation of Yield for Individual Rice Plant Using Multi-angle RGB Imaging
    Duan, Lingfeng
    Huang, Chenglong
    Chen, Guoxing
    Xiong, Lizhong
    Liu, Qian
    Yang, Wanneng
    Computer and Computing Technologies in Agriculture VIII, 2015, 452 : 1 - 12
  • [30] Enhanced detection of fluorescence fluctuations for high-throughput super-resolution imaging
    Zhao, Weisong
    Zhao, Shiqun
    Han, Zhenqian
    Ding, Xiangyan
    Hu, Guangwei
    Qu, Liying
    Huang, Yuanyuan
    Wang, Xinwei
    Mao, Heng
    Jiu, Yaming
    Hu, Ying
    Tan, Jiubin
    Ding, Xumin
    Chen, Liangyi
    Guo, Changliang
    Li, Haoyu
    NATURE PHOTONICS, 2023, 17 (09) : 806 - +