High-Throughput Deep Learning Microscopy Using Multi-Angle Super-Resolution

被引:1
作者
Zhang, Jizhou [1 ,2 ]
Xu, Tingfa [1 ,2 ]
Li, Xiangmin [1 ,2 ]
Zhang, Yizhou [1 ,2 ]
Chen, Yiwen [1 ,2 ]
Wang, Xin [1 ,2 ]
Wang, Shushan [1 ,2 ]
Wang, Chen [3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401120, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215000, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
High-throughput; deep learning; super-resolution; photo-realistic; WIDE-FIELD; PHASE RETRIEVAL; FOURIER; RECONSTRUCTION; IMAGE;
D O I
10.1109/JPHOT.2020.2977888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical applications such as pathology and hematology expect microscopes with high space-bandwidth product (SBP) which is difficult to achieve with conventional microscope setup. By applying a deep neural network, we demonstrate a high spacebandwidth product microscopic technique termed multi-angle super-resolution microscopy (MASRM) to achieve high-resolution imaging with the low-magnification objective. We design a multiple-branch deep residual network which extracts high-frequency information and color information in obliquely-illuminated low-resolution input images and generates high-resolution output. To train our network, we build a well-registered dataset in which both low-resolution input and high-resolution target are real captured images. We carry out detailed experiments to demonstrate the effectiveness of MASRM and compare it with a computational imaging technique termed Fourier ptychographic microscopy (FPM). This data-driven technique unleashes the potential of traditional microscopes with low cost and has broad prospects in biomedical applications.
引用
收藏
页数:14
相关论文
共 41 条
[21]   An improved ptychographical phase retrieval algorithm for diffractive imaging [J].
Maiden, Andrew M. ;
Rodenburg, John M. .
ULTRAMICROSCOPY, 2009, 109 (10) :1256-1262
[22]   Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects [J].
Miao, J ;
Sayre, D ;
Chapman, HN .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (06) :1662-1669
[23]   Deep-STORM: super-resolution single-molecule microscopy by deep learning [J].
Nehme, Elias ;
Weiss, Lucien E. ;
Michaeli, Tomer ;
Shechtman, Yoav .
OPTICA, 2018, 5 (04) :458-464
[24]   Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object [J].
Paganin, D ;
Mayo, SC ;
Gureyev, TE ;
Miller, PR ;
Wilkins, SW .
JOURNAL OF MICROSCOPY, 2002, 206 :33-40
[25]   SRFeat: Single Image Super-Resolution with Feature Discrimination [J].
Park, Seong-Jin ;
Son, Hyeongseok ;
Cho, Sunghyun ;
Hong, Ki-Sang ;
Lee, Seungyong .
COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 :455-471
[26]   Deep Learning Enhanced Mobile-Phone Microscopy [J].
Rivenson, Yair ;
Koydemir, Hatice Ceylan ;
Wang, Hongda ;
Wei, Zhensong ;
Ren, Zhengshuang ;
Gunaydin, Harun ;
Zhang, Yibo ;
Gorocs, Zoltan ;
Liang, Kyle ;
Tseng, Derek ;
Ozcan, Aydogan .
ACS PHOTONICS, 2018, 5 (06) :2354-2364
[27]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35
[28]  
Simonyan K., International Conference on Learning Representations, P1
[29]   Portable lensless wide-field microscopy imaging platform based on digital inline holography and multi-frame pixel super-resolution [J].
Sobieranski, Antonio C. ;
Inci, Fatih ;
Tekin, H. Cumhur ;
Yuksekkaya, Mehmet ;
Comunello, Eros ;
Cobra, Daniel ;
von Wangenheim, Aldo ;
Demirci, Utkan .
LIGHT-SCIENCE & APPLICATIONS, 2015, 4 :e346-e346
[30]   Deep learning approach to Fourier ptychographic microscopy [J].
Thanh Nguyen ;
Xue, Yujia ;
Li, Yunzhe ;
Tian, Lei ;
Nehmetallah, George .
OPTICS EXPRESS, 2018, 26 (20) :26470-26484