High-Throughput Deep Learning Microscopy Using Multi-Angle Super-Resolution

被引:1
作者
Zhang, Jizhou [1 ,2 ]
Xu, Tingfa [1 ,2 ]
Li, Xiangmin [1 ,2 ]
Zhang, Yizhou [1 ,2 ]
Chen, Yiwen [1 ,2 ]
Wang, Xin [1 ,2 ]
Wang, Shushan [1 ,2 ]
Wang, Chen [3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401120, Peoples R China
[3] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215000, Peoples R China
来源
IEEE PHOTONICS JOURNAL | 2020年 / 12卷 / 02期
基金
中国国家自然科学基金;
关键词
High-throughput; deep learning; super-resolution; photo-realistic; WIDE-FIELD; PHASE RETRIEVAL; FOURIER; RECONSTRUCTION; IMAGE;
D O I
10.1109/JPHOT.2020.2977888
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical applications such as pathology and hematology expect microscopes with high space-bandwidth product (SBP) which is difficult to achieve with conventional microscope setup. By applying a deep neural network, we demonstrate a high spacebandwidth product microscopic technique termed multi-angle super-resolution microscopy (MASRM) to achieve high-resolution imaging with the low-magnification objective. We design a multiple-branch deep residual network which extracts high-frequency information and color information in obliquely-illuminated low-resolution input images and generates high-resolution output. To train our network, we build a well-registered dataset in which both low-resolution input and high-resolution target are real captured images. We carry out detailed experiments to demonstrate the effectiveness of MASRM and compare it with a computational imaging technique termed Fourier ptychographic microscopy (FPM). This data-driven technique unleashes the potential of traditional microscopes with low cost and has broad prospects in biomedical applications.
引用
收藏
页数:14
相关论文
共 41 条
[1]   Fourier ptychographic reconstruction using Wirtinger flow optimization [J].
Bian, Liheng ;
Suo, Jinli ;
Zheng, Guoan ;
Guo, Kaikai ;
Chen, Feng ;
Dai, Qionghai .
OPTICS EXPRESS, 2015, 23 (04) :4856-4866
[2]   Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J].
Bishara, Waheb ;
Su, Ting-Wei ;
Coskun, Ahmet F. ;
Ozcan, Aydogan .
OPTICS EXPRESS, 2010, 18 (11) :11181-11191
[3]   Learning-Based Image Reconstruction via Parallel Proximal Algorithm [J].
Bostan, Emrah ;
Kamilov, Ulugbek S. ;
Waller, Laura .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (07) :989-993
[4]  
Christian S., 2015, P IEEE C COMP VIS PA, DOI [DOI 10.1109/CVPR.2015.7298594, 10.1109/CVPR.2015.7298594]
[5]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[6]   PHASE RETRIEVAL ALGORITHMS - A COMPARISON [J].
FIENUP, JR .
APPLIED OPTICS, 1982, 21 (15) :2758-2769
[7]   Digital Imaging in Pathology: Whole-Slide Imaging and Beyond [J].
Ghaznavi, Farzad ;
Evans, Andrew ;
Madabhushi, Anant ;
Feldman, Michael .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 8, 2013, 8 :331-359
[8]  
Goodfellow I.J., 2014, ADV NEUR IN, p1406.2661, DOI DOI 10.1145/3422622
[9]   InstantScope: a low-cost whole slide imaging system with instant focal plane detection [J].
Guo, Kaikai ;
Liao, Jun ;
Bian, Zichao ;
Heng, Xin ;
Zheng, Guoan .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (09) :3210-3216
[10]   Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow [J].
Jiang, Shaowei ;
Guo, Kaikai ;
Liao, Jun ;
Zheng, Guoan .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07) :3306-3319