New application of (G′/G)-expansion method to high-dimensional nonlinear physical equations

被引:30
作者
Ma Yu-Lan [1 ]
Li Bang-Qing [1 ]
Sun Jian-Zhi [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
关键词
(G '/G)-expansion method; Burgers system; soliton structure; chaotic pattern; SOLITARY WAVE SOLUTIONS; VARIABLE SEPARATION; ELLIPTIC FUNCTION; EXPANSION METHOD; EXCITATIONS;
D O I
10.7498/aps.58.7402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The (G'/G)-expansion method is firstly extended to construct exact non-traveling wave general solutions of high-dimensional nonlinear equations, explore special soliton-structure excitation and evolution, and investigate the chaotic patterns and evolution of these solutions. Taking as an example, new non-traveling solutions are calculated for (3 + 1)-dimensional nonlinear Burgers system by using the (G'/G)-expansion method. By setting properly the arbitrary function in the solutions, special soliton-structure excitation and evolution are observed, and the chaotic patterns and evolution are studied for the solutions.
引用
收藏
页码:7402 / 7409
页数:8
相关论文
共 32 条
[1]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[2]   Connections among homogeneous balance method, Weiss-Tabor-Carnevale method and Clarkson-Kruskal method [J].
Fan, EG .
ACTA PHYSICA SINICA, 2000, 49 (08) :1409-1412
[3]   New family of exact solutions and chaotic soltions of generalized Breor-Kaup system in (2+1)-dimensions via an extended mapping approach [J].
Fang, JP ;
Zheng, CL ;
Zhu, HP ;
Ren, QB ;
Chen, LQ .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (02) :203-208
[4]   New variable separation excitations, rectangle-like solitons and fractal solitons in the Boiti-Leon-Pempinelli system [J].
Fang, JP ;
Zheng, CL ;
Zhu, JM .
ACTA PHYSICA SINICA, 2005, 54 (07) :2990-2995
[5]   New variable separation solutions, localized structures and fractals in the (3+1)-dimensional nonlinear Burgers system [J].
Huang, Lei ;
Sun, Jian-An ;
Dou, Fu-Quan ;
Duan, Wen-Shan ;
Lu, Xing-Xia .
ACTA PHYSICA SINICA, 2007, 56 (02) :611-619
[6]   (G′/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system [J].
Li Bang-Qing ;
Ma Yu-Lan .
ACTA PHYSICA SINICA, 2009, 58 (07) :4373-4378
[7]   Exact solutions of Gerdjikov-Ivanov equation [J].
Li Xiang-Zheng ;
Li Xiu-Yong ;
Zhao Li-Ying ;
Zhang Jin-Liang .
ACTA PHYSICA SINICA, 2008, 57 (04) :2031-2034
[8]   Envelope solutions to nonlinear Schrodinger equation [J].
Li, XZ ;
Zhang, JL ;
Wang, YM ;
Wang, ML .
ACTA PHYSICA SINICA, 2004, 53 (12) :4045-4051
[9]   The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function [J].
Liu, SD ;
Fu, ZT ;
Liu, SK ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (04) :718-722
[10]   Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2001, 50 (11) :2068-2073