Some open questions in the theory of generalized permutable subgroups

被引:28
作者
Guo WenBin [1 ]
Xie FengYan [1 ]
Li BaoJun [2 ]
机构
[1] Xuzhou Normal Univ, Sch Math Sci, Xuzhou 221116, Peoples R China
[2] Chengdu Univ Informat Technol, Sch Math, Chengdu 610225, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2009年 / 52卷 / 10期
基金
中国国家自然科学基金;
关键词
finite group; formations; weakly s-supplemented subgroup; maximal subgroup; minimal subgroup; FINITE-GROUPS; SUPPLEMENTED SUBGROUPS; C-NORMALITY;
D O I
10.1007/s11425-009-0045-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H of a group G is said to be weakly s-supplemented in G if H has a supplement T in G such that H boolean AND T <= H-sG, where H-sG is the largest s-permutable subgroup of G contained in 1-1. This paper constructs an example to show that the open questions 6.3 and 6.4 in J Algebra, 315: 192-209 (2007) have negative solutions, and shows that in many cases Question 6.4 is positive. A series of known results are unified and generalized.
引用
收藏
页码:2132 / 2144
页数:13
相关论文
共 29 条
[1]  
Alsheik Ahmad A., 2004, Algebra Discrete Math, P9
[2]   On minimal subgroups of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) :335-342
[3]   Finite groups with some C-normal minimal subgroups [J].
Ballester-Bolinches, A ;
Wang, YM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (02) :121-127
[4]   C-supplemented subgroups of finite groups [J].
Ballester-Bolinches, A ;
Wang, YM ;
Guo, XY .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :383-389
[5]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[6]  
Doerk K., 1992, FINITE SOLVABLE GROU
[7]   CONJUGACY OF ODD ORDER HALL SUBGROUPS [J].
GROSS, F .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1987, 19 :311-319
[8]   X-quasinormal subgroups [J].
Guo, W. ;
Skiba, A. N. ;
Shum, K. P. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (04) :593-605
[9]  
Guo W., 2000, The Theory of Classes of Groups
[10]   G-covering subgroup systems for the classes of supersoluble and nilpotent groups [J].
Guo, WB ;
Shum, KP ;
Skiba, A .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) :125-138