共 61 条
Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice
被引:387
作者:
Santos, Angelica M.
[1
]
Jung, Jason
[2
]
Aziz, Nazneen
[3
]
Kissil, Joseph L.
[1
]
Pure, Ellen
[1
,4
]
机构:
[1] Wistar Inst Anat & Biol, Philadelphia, PA 19104 USA
[2] Univ Penn, Cell & Mol Biol Grad Grp, Philadelphia, PA 19104 USA
[3] Point Therapeut Inc, Boston, MA USA
[4] Ludwig Inst Canc Res, Philadelphia, PA USA
关键词:
DIPEPTIDYL-PEPTIDASE-IV;
REACTIVE STROMAL FIBROBLASTS;
COLLAGEN TYPE-I;
SERINE-PROTEASE;
LUNG-CANCER;
K-RAS;
SUBSTRATE-SPECIFICITY;
REMODELING INTERFACE;
MONOCLONAL-ANTIBODY;
EPITHELIAL CANCERS;
D O I:
10.1172/JCI38988
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
Membrane-bound proteases have recently emerged as critical mediators of tumorigenesis, angiogenesis, and metastasis. However, the mechanisms by which they regulate these processes remain unknown. As the cell surface serine protease fibroblast activation protein (FAP) is selectively expressed on tumor-associated fibroblasts and pericytes in epithelial tumors, we set out to investigate the role of FAP in mouse models of epithelial-derived solid tumors. In this study, we demonstrate that genetic deletion and pharmacologic inhibition of FAP inhibited tumor growth in both an endogenous mouse model of lung cancer driven by the K-ras(G12D) mutant and a mouse model of colon cancer, in which CT26 mouse colon cancer cells were transplanted into immune competent syngeneic mice. Interestingly, growth of only the K-ras(G12D)-driven lung tumors was also attenuated by inhibition of the closely related protease dipeptidyl peptidase IV (DPPIV). Our results indicate that FAP depletion inhibits tumor cell proliferation indirectly, increases accumulation of collagen, decreases myofibroblast content, and decreases blood vessel density in tumors. These data provide proof of principle that targeting stromal cell-mediated modifications of the tumor microenvironment may be an effective approach to treating epithelial-derived solid tumors.
引用
收藏
页码:3613 / 3625
页数:13
相关论文