Modified Korteweg-de Vries surfaces

被引:10
|
作者
Tek, Suleyman [1 ]
机构
[1] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
关键词
SOLITON SURFACES; LIE-ALGEBRAS; GEOMETRY;
D O I
10.1063/1.2409523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we consider 2-surfaces in R-3 arising from the modified Korteweg-de Vries (mKdV) equation. We give a method for constructing the position vector of the mKdV surface explicitly for a given solution of the mKdV equation. mKdV surfaces contain Willmore-like and Weingarten surfaces. We show that some mKdV surfaces can be obtained from a variational principle where the Lagrange function is a polynomial of the Gaussian and mean curvatures. (c) 2007 American Institute of Physics.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Reduction of the Modified Korteweg-de Vries Equation in the Bilinear Form
    Yanjuan ZHU (Department of Mathematics & Physics
    CommunicationsinNonlinearScience&NumericalSimulation, 1998, (01) : 3 - 5
  • [42] A HIGHER-ORDER MODIFIED KORTEWEG-DE VRIES EQUATION
    LINARES, F
    COMPUTATIONAL & APPLIED MATHEMATICS, 1995, 14 (03): : 253 - 267
  • [43] NUMERICAL SIMULATIONS OF THE COMPLEX MODIFIED KORTEWEG-DE VRIES EQUATION
    TAHA, TR
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 461 - 467
  • [44] Darboux transformation and solution of the modified Korteweg-de Vries equation
    Kemelbekova, G.
    Yesmakhanova, K.
    Tapeeva, S.
    Tungushbaeva, D.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2015, 80 (04): : 98 - 102
  • [45] Supersymmetric modified Korteweg-de Vries equation: bilinear approach
    Liu, QP
    Hu, XB
    Zhang, MX
    NONLINEARITY, 2005, 18 (04) : 1597 - 1603
  • [46] On the q-deformed modified Korteweg-de Vries hierarchy
    Tu, MH
    Lee, CR
    PHYSICS LETTERS A, 2000, 266 (2-3) : 155 - 159
  • [47] New type of solutions for the modified Korteweg-de Vries equation
    Liu, Xing-yu
    Lu, Bin-he
    Zhang, Da-jun
    APPLIED MATHEMATICS LETTERS, 2025, 159
  • [48] Helical solitons in vector modified Korteweg-de Vries equations
    Pelinovsky, Dmitry E.
    Stepanyants, Yury A.
    PHYSICS LETTERS A, 2018, 382 (44) : 3165 - 3171
  • [49] Periodic and rational solutions of modified Korteweg-de Vries equation
    Chowdury, Amdad
    Ankiewicz, Adrian
    Akhmediev, Nail
    EUROPEAN PHYSICAL JOURNAL D, 2016, 70 (05): : 1 - 7
  • [50] Multisymplectic Schemes for the Complex Modified Korteweg-de Vries Equation
    Aydin, A.
    Karasoezen, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 60 - +