Modified Korteweg-de Vries surfaces

被引:10
|
作者
Tek, Suleyman [1 ]
机构
[1] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
关键词
SOLITON SURFACES; LIE-ALGEBRAS; GEOMETRY;
D O I
10.1063/1.2409523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we consider 2-surfaces in R-3 arising from the modified Korteweg-de Vries (mKdV) equation. We give a method for constructing the position vector of the mKdV surface explicitly for a given solution of the mKdV equation. mKdV surfaces contain Willmore-like and Weingarten surfaces. We show that some mKdV surfaces can be obtained from a variational principle where the Lagrange function is a polynomial of the Gaussian and mean curvatures. (c) 2007 American Institute of Physics.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Korteweg-de Vries surfaces
    Gurses, Metin
    Tek, Suleyman
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 11 - 22
  • [2] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [3] Soliton surfaces for complex modified Korteweg-de Vries equation
    Bauyrzhan, Gulnur
    Yesmakhanova, Kuralay
    Yerzhanov, Koblandy
    Ybyraiymova, Sveta
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [4] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [5] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [6] Noncommutative Korteweg-de Vries and modified Korteweg-de Vries hierarchies via recursion methods
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [7] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [8] KORTEWEG-DE VRIES SURFACES AND BACKLUND CURVES
    KUPERSHMIDT, BA
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (08) : 1427 - 1432
  • [9] STOCHASTIC MODIFIED KORTEWEG-DE VRIES EQUATION
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 503 - 515
  • [10] MODIFIED KORTEWEG-DE VRIES EQUATION IN ELECTROHYDRODYNAMICS
    PERELMAN, TL
    FRIDMAN, AK
    ELYASHEV.MM
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1974, 66 (04): : 1316 - 1323