Improved prediction of software defects using ensemble machine learning techniques

被引:28
作者
Mehta, Sweta [1 ]
Patnaik, K. Sridhar [1 ]
机构
[1] Birla Inst Technol, Dept Comp Sci & Engn, Ranchi 835315, Bihar, India
关键词
Defect prediction; Dimension reduction; Data imbalance; Machine learning algorithms; XGBoost; Stacking ensemble classifier;
D O I
10.1007/s00521-021-05811-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software testing process is a crucial part in software development. Generally the errors made by developers get fixed at a later stage of the software development process. This increases the impact of the defect. To prevent this, defects need to be predicted during the initial days of the software development, which in turn helps in efficient utilization of the testing resources. Defect prediction process involves classification of software modules into defect prone and non-defect prone. This paper aims to reduce the impact of two major issues faced during defect prediction, i.e., data imbalance and high dimensionality of the defect datasets. In this research work, various software metrics are evaluated using feature selection techniques such as Recursive Feature Elimination (RFE), Correlation-based feature selection, Lasso, Ridge, ElasticNet and Boruta. Logistic Regression, Decision Trees, K-nearest neighbor, Support Vector Machines and Ensemble Learning are some of the algorithms in machine learning that have been used in combination with the feature extraction and feature selection techniques for classifying the modules in software as defect prone and non-defect prone. The proposed model uses combination of Partial Least Square (PLS) Regression and RFE for dimension reduction which is further combined with Synthetic Minority Oversampling Technique due to the imbalanced nature of the used datasets. It has been observed that XGBoost and Stacking Ensemble technique gave best results for all the datasets with defect prediction accuracy more than 0.9 as compared to algorithms used in the research work.
引用
收藏
页码:10551 / 10562
页数:12
相关论文
共 50 条
  • [1] Improved prediction of software defects using ensemble machine learning techniques
    Sweta Mehta
    K. Sridhar Patnaik
    Neural Computing and Applications, 2021, 33 : 10551 - 10562
  • [2] Prediction of Software Defects Using Automated Machine Learning
    Tanaka, Kazuya
    Monden, Akito
    Yucel, Zeynep
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 490 - 494
  • [3] Game State Prediction with Ensemble of Machine Learning Techniques
    Woh, Sange-Myeong
    Lee, Jee-Hyong
    2018 JOINT 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 19TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2018, : 89 - 92
  • [5] Software defect prediction using ensemble learning on selected features
    Laradji, Issam H.
    Alshayeb, Mohammad
    Ghouti, Lahouari
    INFORMATION AND SOFTWARE TECHNOLOGY, 2015, 58 : 388 - 402
  • [6] Comparison of Machine Learning Techniques for Software Quality Prediction
    Goyal, Somya
    INTERNATIONAL JOURNAL OF KNOWLEDGE AND SYSTEMS SCIENCE, 2020, 11 (02) : 20 - 40
  • [7] Software Code Analysis using Ensemble Learning Techniques
    Aggarwal, Simran
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION SCIENCE AND SYSTEM, AISS 2019, 2019,
  • [8] Optimization of an Analysis Method for Diabetes Prediction Using Classical and Ensemble Machine Learning Techniques
    Naranjo, Edison
    Arguero, Berenice
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 527 - 536
  • [9] BPDET: An effective software bug prediction model using deep representation and ensemble learning techniques
    Pandey, Sushant Kumar
    Mishra, Ravi Bhushan
    Tripathi, Anil Kumar
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 144
  • [10] A systematic review of machine learning techniques for software fault prediction
    Malhotra, Ruchika
    APPLIED SOFT COMPUTING, 2015, 27 : 504 - 518