An effective study of polynomial maps

被引:3
作者
Adamus, Elzbieta [1 ]
Bogdan, Pawel [2 ]
Crespo, Teresa [3 ]
Hajto, Zbigniew [2 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Al A Mickiewicza 30, PL-30059 Krakow, Poland
[2] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Univ Barcelona, Dept Algebra & Geometria, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
关键词
Polynomial automorphism; Jacobian problem;
D O I
10.1142/S0219498817501419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using an effective algorithm, we obtain an equivalent statement to the Jacobian Conjecture. For a polynomial map F on an affine space of dimension n over a field of characteristic 0, we define recursively a finite sequence of polynomial maps. We give an equivalent condition to the invertibility of F as well as a formula for F-1 in terms of this finite sequence of polynomial maps. Some examples illustrate the effective aspects of our approach.
引用
收藏
页数:13
相关论文
共 15 条
[1]  
Adamus E., ARXIV150601662MATHAC
[2]  
[Anonymous], 1984, Univ. Iagel. Acta Math.
[3]   THE JACOBIAN CONJECTURE - REDUCTION OF DEGREE AND FORMAL EXPANSION OF THE INVERSE [J].
BASS, H ;
CONNELL, EH ;
WRIGHT, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (02) :287-330
[4]   CONDITION FOR A POLYNOMIAL MAP TO BE INVERTIBLE [J].
CAMPBELL, LA .
MATHEMATISCHE ANNALEN, 1973, 205 (03) :243-248
[5]   Picard-vessiot theory and the Jacobian problem [J].
Crespo, Teresa ;
Hajto, Zbigniew .
ISRAEL JOURNAL OF MATHEMATICS, 2011, 186 (01) :401-406
[6]   Quasi-translations and counterexamples to the homogeneous dependence problem [J].
De Bondt, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (10) :2849-2856
[7]  
de Bondt M., ARXIV150105168MATHAG
[8]   Locally finite polynomial endomorphisms [J].
Furter, Jean-Philippe ;
Maubach, Stefan .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 211 (02) :445-458
[9]  
Gorni G., 1996, ANN POL MATH, V64, P285
[10]  
Keller O.-H., 1939, Monatshefte Math. Phys, V47, P299, DOI [10.1007/BF01695502, DOI 10.1007/BF01695502, 10.1007/BF01695502 (German, DOI 10.1007/BF01695502(GERMAN]