Properties of the trajectories in Bohmian mechanics

被引:69
作者
Frisk, H
机构
[1] Department of Mathematics, University of Växjö
关键词
D O I
10.1016/S0375-9601(97)00044-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The three different types of flow that can occur in Bohmian mechanics are examined. The nodes of the guiding wave function are found to be crucial, both in providing a mixing like behaviour and as the main source of nonclassical motion.
引用
收藏
页码:139 / 142
页数:4
相关论文
共 22 条
[1]  
Arnold V. I., 1968, Ergodic Problems of Classical Mechanics, V9
[2]   ON THE GLOBAL EXISTENCE OF BOHMIAN MECHANICS [J].
BERNDL, K ;
DURR, D ;
GOLDSTEIN, S ;
PERUZZI, G ;
ZANGHI, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 173 (03) :647-673
[3]   Clarifying chaos: Examples and counterexamples [J].
Brown, R ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (02) :219-249
[4]  
CVITANOVIC P, 1996, QUANTUM FLUIDS CLASS
[5]   Measurement, decoherence and chaos in quantum pinball [J].
Dewdney, C ;
Malik, Z .
PHYSICS LETTERS A, 1996, 220 (4-5) :183-188
[6]   UNIFIED THEORY OF LYAPUNOV EXPONENTS AND A POSITIVE EXAMPLE OF DETERMINISTIC QUANTUM CHAOS [J].
FAISAL, FHM ;
SCHWENGELBECK, U .
PHYSICS LETTERS A, 1995, 207 (1-2) :31-36
[7]   DOES QUANTUM-MECHANICS OBEY THE CORRESPONDENCE PRINCIPLE - IS IT COMPLETE [J].
FORD, J ;
MANTICA, G .
AMERICAN JOURNAL OF PHYSICS, 1992, 60 (12) :1086-1098
[8]   THE ARNOLD CAT - FAILURE OF THE CORRESPONDENCE PRINCIPLE [J].
FORD, J ;
MANTICA, G ;
RISTOW, GH .
PHYSICA D, 1991, 50 (03) :493-520
[9]   LOCALIZATION OF EIGENFUNCTIONS AROUND PERIODIC-ORBITS AND THE ORDER TO CHAOS TRANSITION [J].
FRISK, H .
PHYSICA SCRIPTA, 1991, 43 (06) :545-550
[10]  
HELLER EJ, 1991, LES HOUCH S, V52, P547