Pseudo-commutative monads and pseudo-closed 2-categories

被引:37
作者
Hyland, M
Power, J
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WB, England
[2] Univ Edinburgh, Lab Fdn Comp Sci, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0022-4049(02)00133-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Pseudo-commutative 2-monads and pseudo-closed 2-categories are defined. The former give rise to the latter: if T is pseudo-commutative, then the 2-category T-Alg, of strict T-algebras and pseudo-maps of algebras, is pseudo-closed. In particular, the 2-category of symmetric monoidal categories, is pseudo-closed. Subject to a biadjointness condition that is satisfied by T-Alg, pseudo-closed structure induces pseudo-monoidal structure on the 2-category. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:141 / 185
页数:45
相关论文
共 17 条
[1]  
Barr M., 1985, GRUNDLEHREN MATH WIS, V278
[2]   FLEXIBLE LIMITS FOR 2-CATEGORIES [J].
BIRD, GJ ;
KELLY, GM ;
POWER, AJ ;
STREET, RH .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 61 (01) :1-27
[3]   TWO-DIMENSIONAL MONAD THEORY [J].
BLACKWELL, R ;
KELLY, GM ;
POWER, AJ .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 59 (01) :1-41
[4]  
DAY BJ, 1974, LECT NOTES MATH, V420, P55
[5]  
Day Brian, 1970, REPORTS MIDWEST CATE, V137, P1, DOI DOI 10.1007/BFB0060438
[6]  
Day Brian., 1974, Category Seminar (Proc. Sem., Sydney, 1972/1973), V420, P20
[7]  
EILENBERG S, 1966, P C CAT ALG LA JOLL
[8]  
Gordon R., 1995, MEM AM MATH SOC, V558
[9]  
Hyland M., 2000, Proceedings of the 2nd International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP '00), P280, DOI 10.1145/351268.351299
[10]  
Kelly G., 1974, CATEGORY SEMINAR, P281, DOI DOI 10.1007/BFB0063106